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1 INTRODUCTION 

The last intense seismic events occurred in 1999 in Turkey, Greece and 
Taiwan have had the important consequence of confirming, worldwide, the need of 
developing new and more comprehensive concepts for assessing the state of existing 
bridges and for designing safer and easy-to- implement strengthening techniques. 
Nowadays, no other research topic has so direct an influence over practice, as 
confirmed by the large amount of retrofit work on bridges, taking place with more 
and more accelerating pace all over the developed seismic countries of the world. 

The need for strengthening the existing bridges stems from the consideration 
that most of the bridges built in the past in seismic zones according to now-obsolete 
codes are inadequate to meet the more stringent requirements imposed in the new 
generation of codes, for as regards both strength and ductility. The deficiencies that 
make existing bridges, even those built until the very last few years, vulnerable to 
seismic action all have a single common cause: the conventionality of the seismic 
design approach used in the former codes (and still in some of the present ones). 

It is widely known that those codes had the limitations of emphasizing the 
strength aspects while only making implicit reference to the concept of ductility and, 
which is more important, gave no provisions to ensure stability of the response in the 
post-elastic range.  

As a consequence, existing bridge piers built according to those codes – as 
observed either from original project drawings or through in-situ inspections after 
destructive seismic events – rather frequently, at least in Italy, are equipped with 
adequate amounts of longitudinal reinforcement (thus complying with the flexural 
strength requirements), while systematically showing insufficient transverse 
reinforcements (thus lacking the confinement necessary for ensuring a ductile 
response). 

Another common source of inadequacy of existing bridge piers arises from 
the nowadays frequent re-classifications of seismic zones (for ex., in Italy, after that 
of 1981, a new one is under development, based on more accurate hazard studies); in 
such cases, most bridge piers designed according to a previous seismic zonation do 
not satisfy the verifications with the new increased seismic actions. 

The seismicity of Italy is certainly less than that, for ex., of California or in 
parts of Japan, but events of Magnitude of the order of 6.5 are rather frequent (the 
last M=6.5 event did occur in Southern Italy in 1981, and the previous M=6.5 in 
Northern Italy in 1976), and events of magnitude larger than 7 have also occurred, at 
a rate of about twice every century starting from the year 1000. Although the 
seismicity of Italy is well known to geophysicists, and plenty of hazard studies have 
been produced and are available, no officially approved hazard map exists, while the 
zoning of the country for the purposes of seismic design reflects more the 
information from (recent) past events than the input from geophysical studies. 
Additionally, the seismic zones have been substantially enlarged after the 70’s, i.e., 
after the completion of the highway system, so that in the end a random relation 
exists between the location of the bridges, the actual hazard at the sites, the present 



definition of the seismic zones, and the way the bridges have been designed 
(earthquake resistant or not). 

Based on the above considerations, it should be clear how the necessity of 
accurately assessing the state of existing bridges and of retrofitting them has become 
a deeply felt issue. Luckily enough, the structural types adopted internationally for 
urban viaducts and highway bridges are mostly similar; this situation has been of 
help in arriving at a unified view on the appropriate diagnosis methods and on the 
remedial measures to be adopted, be these necessary for enhancing strength and/or 
ductility of the piers, for eliminating excessive mobility of the deck, for ensuring safe 
transmission of the forces through bearings, etc. This amounts to saying that in 
seismic retrofit of bridges the focus is not so much on theoretical developments, 
although technological advances are needed, for ex. on materials and techniques for 
strengthening, as it is on an efficient management of the resources available. 

 
This report tries to cover all of the above aspects, with due consideration to 

issues concerning bridges, regarded both as single structures and as parts of a whole 
and more complex system, such as a highway system. The motivation for the studies 
contained in this report derives from an endeavor promoted by the GNDT, Gruppo 
Nazionale per la Difesa dai Terremoti (National Group for the Defense Against 
Earthquakes) that has had many of the Italian Research Centers and Universities 
involved in a common effort to provide answers and clarify most of those aspects of 
the seismic behavior of structures, that are still indefinite and not so thoroughly 
studied. In particular, this report covers the studies conducted at the University of 
Rome La Sapienza in the last years, where a continuous effort has been devoted to 
the investigation of different issues regarding the seismic response of bridges, both 
conventional and isolated. All the work carried out can be grouped under three main 
topics, and this is actually how this report is articulated: 

 
Chapter 2 – Bridge systems 
Chapter 3 – Important phenomena affecting the bridge response 
Chapter 4 – Upgrading of bridge piers with FRP 
 
Chapter 2 (Bridge systems , page 9, based on the research work by Giannini, 

R., Nuti, C., and Pinto, P.E.) is essentially of methodological nature, where object of 
the study is a significant part of the Italian highway network, whose vulnerable 
elements are supposed to be the bridges. The study, dealt within a probabilistic 
framework, involves the complete knowledge of the state of all bridges and the 
verification whether they are adequate for ensuring the network functioning after an 
earthquake. This is defined as continued linking between any two nodes of the 
network. The final objective of such study is that of singling out the most critical 
bridges for the network functioning, as well as quantifying the degree of upgrading 
required for reaching the target reliability. The study presented in this chapter is 
developed in four stages: firstly, the present seismic hazard over the Italian highway 
network has been defined through an accurate hazard study; secondly, a well-



structured database that collects the description of all bridges in the Italian highway 
network has been analyzed, from which fragility curves for all bridges have been 
developed in order to obtain a synthetic description of their behavior under seismic 
condition; thirdly, the current state of all bridges under scenario earthquakes has been 
determined; the final step has been to rank the bridges in order of importance (value 
of the bridges and its role in ensuring continued communication), rehabilitation cost, 
simultaneous necessity of interventions for non seismic maintenance and repair.  

 
Chapter 3 (Important  phenomena affecting  the bridge response, page 27) 

deals with topics that can be regarded either from the design or the assessment 
standpoint. These are issues that significantly affect the overall behavior of bridges, 
modifying the response and affecting the performance, and are seldom included into 
design considerations without proper account of the subsequent deficencies that can 
hamper the design objectives. 

The phenomena considered in Chapter 3, which are recognized a certain 
relevance, are: 
• Multi-support excitation 
• Soil-structure interaction 
• Vertical oscillations 

Multi-support seismic excitation (Section 3.1, page 27, based on the 
research work by Monti, G., Nuti, C., and Pinto, P.E.) denotes the difference in 
seismic input that is generally observed at the pier supports of long bridges. Recently 
recorded soil time histories obtained from strong motion arrays installed in seismic 
areas have clearly demonstrated that the motion of relatively close points on the soil 
surface is not synchronous, that is, even relatively close points can experience 
significant relative displacements. This phenomenon is due both to reflection and 
refraction of seismic waves through underlying soil layers with different mechanical 
characteristics and to the presence of soils of different nature under different support 
points. From the point of view of structural analysis, the most important implication 
of this observed behavior is that the conventionally adopted assumption of equal 
seismic input under all supports is only acceptable when dealing with bridges of 
moderate dimensions, while it is far from reality if long-span bridges (isolated or not) 
are to be studied. In these cases, due consideration should be given to the non-
synchronism of the seismic action, since different input motions experienced at 
adjacent supports can significantly modify the overall structural response thus 
jeopardizing the design concept. Present guidelines, when they exist, are vague 
and/or too grossly empirical. Actually, non-synchronous input induces a specific type 
of excitation in which pseudo-static relative displacements are included, with ensuing 
possibly significant variations of the displacement field and of the ductility 
requirements. The above effect is obviously of special relevance for bridges, whose 
effectiveness is conditioned to an accurate assessment of the relative displacement 
between deck and pier caps. In section 3.1 this phenomenon is studied through a 
series of numerical analyses on both conventional and isolated bridges and its effects 
clarified. 



Soil-Structure Interaction (Section 3.2, page 68, based on the research work 
by Ciampoli, M., and Pinto, P.E.) is the typical effect resulting from the difference 
between the structural response evaluated assuming an ideal rigid foundation and that 
obtained with the actual soil foundation. The difference can be attributed to two 
distinct physical causes: the propagating nature of seismic disturbances in the form 
of waves, which makes the soil motion at any given instant generally different from 
point to point within a spatially extended foundation, and the inertia forces 
transmitted by the structure to the soil during the oscillations, which induce a 
deformation in the soil that adds up to the one existing in the free-field. In section 3.2 
a large parametric study on this second phenomenon concerned with bridge piers of 
common geometry having spread or strip footing foundations is presented, where, as 
opposed to all the studies developed thus far, the inelastic response of the 
superstructure is considered. Quantitative information are given on the extent by 
which yielding tend to decrease SSI effects, and especially on the effects of SSI on 
the maximum required ductilities in the critical regions of the superstructure. 

Vertical oscillations  (Section 3.3, page 88, based on the research work by 
Petrangeli, M., Pinto, P.E., and Ranzo, G.) is a secondary phenomenon that occurs in 
bridge piers subjected to horizontal seismic input. Analyses conducted on single 
column bent systems indicate that flexural cracking produces significant bending-
induced axial vibrations. This effect is particularly relevant in squat elements with 
low axial force where the sway of the cross section neutral axis under alternate 
bending causes strong hammering impulses at crack closure. Performance and design 
forces of bearings and other anti-seismic devices should be estimated with more 
accuracy, based on the expected level of combined vertical and horizontal 
acceleration response on decks. In section 3.3 this problem is dealt with and a 
tentative equation for the prediction of this flexural- induced vertical acceleration 
component is proposed, based on simplified section kinematics and elastic impact 
analysis. 

 
In Chapter 4 (Upgrading of bridge piers with FRP, page 108, based on the 

research work by Monti, G., Nisticò, N., Santini, S., Spoelstra, M.R.) another topic, 
which logically follows those treated in the previous Chapters, is treated: that of the 
rehabilitation of old bridges, with particular reference to the piers. Common 
retrofitting techniques of bridge piers typically aim at increasing the available 
ductility by enhancing the confinement action in either the potential plastic hinge 
region or over the entire pier. Steel jacketing has had an extensive use in practice and 
has proved to be an effective measure for retrofitting, yet recently advanced 
composite materials, such as fiber-reinforced polymers (FRP), are increasingly 
gaining a widely recognized role as structural materials and are now fully recognized 
to represent an effective alternative retrofit technique for bridge piers. Tests carried 
out in the USA and in Japan have shown that strengthening with innovative 
composite jackets improves the strength and the ductility of columns, concluding that 
wrapping of columns by FRP materials provides an affective and economical 
alternative for seismic retrofitting of piers. 



Following these encouraging results, in the last years, in California, more 
than 500 bridge piers have been wrapped with advanced composite materials and 
now similar programs are currently under way in Japan. In Europe, where notable 
interest exists, the problem is still in an interlocutory phase, mainly because of the 
lack of established and accepted design rules, which slow down the process of 
promoting FRP as an ‘official’ construction material.  

The intent of Chapter 4 is to give a contribution towards the development of 
such design rules to obtain, through FRP jacketing, the desired level of upgrading of 
insufficiently ductile piers, designed according to obsolete codes. Firstly, a recently 
developed model of FRP-confined concrete is presented, which has the capability to 
trace the peculiar response of concrete under the continuously increasing 
confinement applied by an elastic material such as FRP, as opposed to the traditional 
models where it is assumed that steel applies a constant confinement after yield. 
Through such model practical formulae for predicting the ultimate strain and strength 
of FRP-confined concrete are developed. Subsequently, a study on FRP-confined 
concrete sections is presented, and practical design equation are developed, which 
allow to determine the optimal FRP thickness to wrap circular sections with, given a 
target performance to achieve. 

 
 



2 BRIDGE SYSTEMS 

2.1 Analytical seismic assessment of the bridges on a highway system 

In Italy, the largest part (90%) of the existing highway system is owned and 
operated by a single Company: Autostrade. Its network, shown in Figure 2.1,  has 
roughly 5500 km of highways, comprising a total of 2826 bridges. The highways 
were built essentially in the 60’s and in the 70’s, with only minor additions going on 
until presently. Seismic design regulations of the time were almost nominal: 
horizontal forces equal to 10% of the permanent weights in the zones of highest 
seismicity (7% in the other seismic zones), with no attention paid to ensure ductile 
behavior, to check compatibility of displacements between adjacent decks, the 
strength and admissible displacements of the bearings, etc.; moreover, many areas, 
which an hazard analysis reveal to be seismic, in those years were not thus classified. 
In a large percentage of cases, the reinforcement of the piers is not dictated by the 
seismic forces, but from wind and braking forces, or more simply by minimum 
percentage requirements. Fortunately, tradition has in Italy that bridge piers should 
be (and look) rather rigid, as compared to those of similar bridges elsewhere, and this 
provides in many cases a much appreciated extra strength. Also for the foundations, 
Italian practice is rather conservative, in order to ensure satisfactory performances 
under service loads, and this leads in many cases to foundations which are stronger 
than the superstructure, a desirable property under seismic action. 

 
Figure 2.1. The Italian highway network of Autostrade. 



The last strong earthquakes in Italy have not produced significant damages to 
bridge structures (by chance, due to the fact that the highways were far from 
epicentral areas). In spite of the lack of this, usually potent, incentive to assessment 
and rehabilitation programs, Autostrade has resolved to undertake a systematic 
scrutiny of its entire bridge stock in terms of seismic performance. Given the 
unusually large scale of the problem, particular attention has been devoted to the 
setting up of an appropriate assessment method, with the constraints that it should 
not be based on qualitative typological vulnerability forms on one hand, nor it should 
require detailed analyses based on drawings, at the other extreme. A number of 
alternatives were initially considered; the one receiving more credit at an early stage 
was to try to categorize the whole stock into a discrete number of types, then to select 
a representative bridge within each type and to analyze it in detail. All bridges 
belonging to the same type would have then been assigned the vulnerability found 
for the representative structure. 

A much more accurate and efficient procedure has been finally set up, which 
relies upon an existing data bank created by Autostrade for maintenance purposes, 
allowing a complete reconstruction of the geometry of all bridges. Details and 
limitations of the procedure are described in the following. 

The outcome of this part of the study is one number for each bridge, 
expressing the probability of failure of the bridge, given that the peak ground 
acceleration having a selected (the same for the whole network) annual probability of 
exceedance occurs at the bridge site. To evaluate this set of numbers, a reference is 
needed. The criterion adopted has been to consider as acceptable (i.e. no intervention 
on the bridge is required) all values that are equal or below the probability of failure 
of representative bridges designed in accordance with Eurocode 8/2 (1994), given the 
occurrence of the design acceleration. Of course no such value can be found in 
EC8/2. This has required a side study, consisting in designing a number of bridge 
structures, similar to those of interest, in full accordance with the EC8/2 provisions 
and, subsequently, in performing on them a probabilistic risk analysis, conditional to 
the occurrence of the acceleration used in the design. The values obtained had clearly 
a certain scatter, and a reasonable upper bound was therefore selected. 

The end result of the whole study, as reported in the following sections, is a 
list of bridges, ordered for decreasing values of risk, which do not fulfil the safety 
requirements for new designs according to a modern code. This is considered to be 
the point of departure for developing cost-benefit strategies necessary for providing 
guidance for the amount of strengthening to be provided. 

2.2 Screening of the bridges to be examined 

About three quarters of the Italian territory is considered as seismically 
active, and earthquake resistant design is compulsory. Seismicity is not uniform, 
however, the southern regions having the heaviest record of destructive events. A 
plot of all the events occurred since the year 1000 with intensity larger than 7 is 
shown in Figure 2.2.  

 



 
Figure 2.2. Historical events in Italy with IMM>7. 

The first necessary step in the study to be undertaken is clearly to determine 
the seismic hazard along the route of the various highways. This is just one side of 
the problem, however, the other one being the level of seismic intensity for which a 
risk evaluation of bridges is warranted. 

Whether designed for earthquakes or not, all bridges possess a certain 
resistance to lateral loads, which comes from requirements of stiffness and from 
design for wind and other horizontal forces. If this “natural” resistance, expressed in 
terms of ground acceleration causing failure, is larger than the ground acceleration at 
the site having an appropriately chosen (large) return period, any seismic verification 
becomes unnecessary.  

The two steps described above have been carried out according to the 
following criteria. 

2.2.1 Hazard analysis 

The combined historical-geophysical information available allows to 
subdivide the Italian territory into 45 homogeneous regions, for each of which the 
catalogue data are sufficient for determining a separate Gutenberg-Richter law for 
the intensity, including upper and lower bounds. Using a single attenuation law for 
the whole range of intensities and for all regions (alternatives are available, but they 
are not adequately supported), a Cornell type of analysis has been carried out to 
determine the va lue of IMM  having specified values of the return period, TR, along 
the highway route. Values of TR =500 years and 50 years have been considered, the 



former one to be used for ultimate limit states (ULS) verifications. Selected results 
for two highways, the N-S Milano-Napoli and the W-E Napoli-Canosa are shown in 
Figure 2.3. The latter highway crosses one of the major seismic regions of the 
country. 
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Figure 2.3. Hazard curves for two Italian highways. 

2.2.2 Natural seismic resistance 

Out of the total of 2826 bridges, more than one third: 1151, are made up of 
decks which are simply supported on different piers systems. Other 1363 bridges are 
single span structures directly supported on the abutments, and the remaining 312 
bridges are variously distributed among Gerber, arch, continuous deck, cantilever 
construction and frame-like types. 

Leaving out bridges of unique characteristics, like some large arch bridges 
built in the sixties, as well as other important bridges with large spans (in excess of 
100 m), for which specific vulnerability studies are unavoidable, the category of the 
simply supported bridges has been considered as the one with the largest risk and, 
inside this category, the piers made up of single bents as the more vulnerable. 

Searching in the data base of Autostrade, the characteristics of which will be 
presented later, the whole range of cross-section properties of the piers, the 
corresponding range of heights for each section geometry, and the span lengths have 
been examined. Span length is not a strong parameter, since most spans are around 
30 m, only the more recent ones reaching 40 m. The key parameter is the ratio 



between the cross section dimension and the height of the pier. The choice has finally 
been made of two cross section shapes, each one associated with a range of heights, 
as shown in Table 2.1, for a total of 10 cases. 

 

Table 2.1. Representative piers examined. 

CROSS SECTION (m) HEIGHT (m) 

Rectangular hollow 6.60 x 3.80 10,15,25,35,45 

Circular hollow 3.80 8,12,16,20,24 
 
Although they are representative of the actual population, the cases examined 

do not correspond to existing bridges: they are believed to be an hypothetical sample 
lying on the more vulnerable side of the whole set. The virtual bridges have been 
subsequently designed using the loading and material codes applicable in the period 
1960-1970, considering traffic and wind loading, but excluding seismic forces. With 
the longitudinal and transverse reinforcement known, a numerical model of the 
bridge can then be constructed. 

Flexural behavior is described by means of a bi- linear force-displacement 
relationship at the top of the pier. The details of this derivation are given later; for the 
purpose at hand the characteristics that are used are: the yield force yF , the stiffness 

yyFK ∆= , where y∆  is the top displacement at yield, the period KMT π= 2 , 
where M is the mass of the deck inclusive of the pier cap and of the part of the pier, 
and the ultimate ductility yuu ∆∆=µ , where u∆  is based on the ultimate curvature 
of the base section, evaluated by assuming conservative values of the compressive 
strain of concrete. 

If ( )TSa  denote an appropriate elastic response spectrum normalized to a unit 
peak ground acceleration, the value of A causing flexural collapse is evaluated as: 
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F
A

a
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provided yu FV ≥ , where uV  is the ultimate shear capacity of the pier. When the 
above condition is not satisfied, shear failure precedes flexural failure, and the 
corresponding acceleration is: 

 
( )TSM
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A
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In the analyses, ( )TSa  has been taken as the normalized elastic spectrum 
suggested in the Eurocode 8 for intermediate soil conditions, while shear capacity 
has been evaluated in accordance with Eurocode 2. The values of cA  obtained for 
the ten cases of piers, in the transverse direction, are reported in Table 2.2. 



Shear failure occurs only for the shorter (H=10 m) rectangular pie r; in all 
other piers collapse is governed by exhaustion of ductility. Circular piers have 
consistently lower values of cA , due to lower available ductility with respect to the 
rectangular ones: this in turn is due to the shape of the section and to the higher 
average vertical stress. 

 
Table 2.2. Values of acceleration causing collapse. 

 RECTANGULAR CIRCULAR 

H (m) 10 15 25 35 45 8 12 16 20 24 

cA  (g) 0.25 2.6 1.7 1.4 1.4 0.47 0.37 0.31 0.28 0.34 

 
It is observed however, that all values obtained are rather high, perhaps 

higher than expected, given the total absence of design provisions for seismic 
resistance. This is principally a consequence of the relatively large dimensions 
adopted for the piers, for reasons of minimum stiffness and/or aesthetics. 

The same piers have been combined in various ways to form longitudinal 
bridge configurations: the analyses made assuming equal longitudinal displacements 
have yielded values of cA  of the same order of magnitude than for single piers in the 
transverse direction. 

In addition to the structural failure mechanisms considered up to now, the 
possibility of collapse due to loss of support of the deck has also been considered. 
This type of failure has been frequently observed in recent earthquakes even for 
bridges of the last generation. 

The modeling assumptions for this phenomenon have been rather simple: two 
identical adjacent piers have been considered to move in the opposite direction, with 

a maximum relative displacement  evaluated as: 1
2
1max 41.12 µ=µ=µ , where 1µ  

is the maximum displacement at the top of each pier. A seating length of 50 cm has 
been considered; the most unfavorable situation occurred for the tallest rectangular 
pier (H=45 m) for which the value of  ( ) g13.0cm 50 =cA  was found. 

2.2.3 Final selection of bridges 

For failures of structural types, the lowest value of cA  within the population 
considered has been: cA =0.25g, related to a shear type of failure. According to the 

relationship adopted between A and I: I
cA 1908.03356.210 +−= , the corresponding 

value of I is 9.  
Considering the variability inherent in the relationship on one hand, and the 

possible existence in the whole network of bridges more vulnerable than those 
examined, the threshold below which no seismic evaluation is required has been set 
to g15.08 ⇒=MMI . Analogous considerations of prudence led to adopt a value of 



I=7 for the threshold below which no intervention preventing decks from failing 
needs to be considered.  

Comparing the values of the two thresholds with the 500 years return period 
hazard, it has been found that for what concerns structural failure only 6 of the 15 
highways, and not all for their entire length, remain: they are shown in Figure 2.4. 
For the problem of unseating the risk is larger, and 12 out of the 15 highways need to 
be checked under this respect. 

 
Figure 2.4. Highways for which risk analysis has been performed. 

2.3 Evaluation of the bridges 

2.3.1 Outline of the procedure 

Information on all bridges of the network Autostrade is contained in a data-
bank, to be described in the following section. The procedure for seismic evaluation 
reads sequentially, for each of the six highways left from the preliminary screening, 
the location of each bridge: if the calculated local hazard is less than I=8, it passes 
directly to the next one, until one is found for which 8≥I . The corresponding value 
of the peak ground acceleration is calculated. 

Entering into the data-base, the procedure selects the information required to 
reconstruct the geometry of the bridge, and all available elements required for the 
purposes of the evaluation. Given the geometry, and using the loading and material 
codes in force at the time of the construction, the longitudinal and transverse 
reinforcement of the piers is determined in turn. The available data allow this 
simulated design to be carried out for the majority of existing pier types. When data 
are not sufficient the bridge in question is tagged for a separate ad hoc treatment. 



A mechanical model of the pier is then set up. Evaluation consists in 
determining the probability of collapse of each pier: fiP  for a combined mechanism 
of flexure and shear, given the value of the site peak ground acceleration 
characterized by an average return period of 500 years. In obtaining fiP , flexural and 
shear strength, ultimate ductility, elastic spectral ordinates and inelastic force 
reduction factors are assumed as random variables. The collapse probability for the 
entire bridge is evaluated with the assumption of independent collapses of all piers: 

 ( )∏ −−= fif PP 11  (3) 

2.3.2 The data bank SAMOA 

SAMOA has been elaborated by Autostrade for several purposes, the main 
ones being the possibility of keeping up-dated the state of each bridge in terms of 
deterioration phenomena affecting materials (carbonation of concrete, oxidation of 
steel, etc.) and elements (loss of concrete, cracking, degradation of joints, bearings, 
movements in the foundations, etc.), as well as for keeping track of all the 
interventions made, which may range from ordinary maintenance to structural 
restoration, with or without upgrading. 

 
Figure 2.5. Sketch of bridge elements considered in SAMOA. 



Bridges in SAMOA are decomposed into the following structural elements: 
foundations, piers, abutments, arches, decks, bearings, joints. One form is filled for 
each element. The case of a simply supported bridge is illustrated in Figure 2.5.  

For what concerns the piers, that are the elements to be known in more detail 
for the purpose of evaluation, the following classification is adopted. The structural 
systems can be: Single bent, Wall, Portal frame and Multi-bay frame, both with or 
without intermediate transverse beams, plane or spatial. The cross sections of the 
vertical elements can be: rectangular, circular, polygonal, elliptic and “other”, either 
solid or hollow, in the latter case simply or multiply connected. 

2.3.3 Simulated design of the piers 

Actions considered in the design include permanent loads, traffic, braking, 
wind loads and, if at the time of construction the site was classified as seismic, static 
equivalent seismic forces (to be combined with the permanent loads only). 

The action effects are of immediate determination in the case of simple 
cantilevers. For frames, the assumption has been made of a stiff top transverse beam, 
so as to allow for the approximation of treating the columns as built in at both ends. 

The most unfavorable combination of action effects has been used for the 
design of the base section of the piers (all piers have uniform dimensions along their 
height), for bending and for shear. Admissible stress criteria have been adopted, with 
values consistent with the presumed strength characteristics of concrete and steel. In 
many cases, the amount of reinforcement (longitudinal as well as transverse) has 
been found to be governed by minimum requirements. Spot comparisons of the 
calculated amount of reinforcement with that indicated in the design drawings have 
shown good agreement between the two. 

2.3.4 Evaluation procedure 

The mechanical model of the pier consists in all cases of a cantilever carrying 
a mass at the top. If the original structure is a frame, with two or more columns, the 
force-displacement relationship is evaluated considering the columns as built in at 
one end and with a height equal to half of the clear height between foundation mat 
and pier cap. The moment-curvature relationship of the end section is sufficient for 
obtaining the yield ( )yyF µ,  and the ultimate ( )uuF µ,  points in the µ−F  curve. As 
shown in Figure 2.6, the variation of the curvature along the height is assumed to be 
parabolic between yield and decompression sections, and then linear up to the top.  

The expressions for the two points are: 
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with obvious meaning of the symbols. The length of the plastic hinge has been taken 
as half of the height of the section. The ultimate compression strain of concrete has 
been assigned a value of 0.5%. 

The µ−F  diagram defines flexural strength and ductility of the pier. 

 
Figure 2.6. Variation of the curvature along the height of the pier. 
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Figure 2.7. Truss model for the shear force equilibrated by vertical load. 

For the assessment of shear capacity, use has been made of the expressions 
proposed by Priestley at al. (1994): 

 psc VVVV ++=µ  (6) 

where cV  is the contribution of concrete, sV  is the shear carried by transverse steel 
and pV  is the horizontal component of the inclined thrust of the vertical load P, 
which is equilibrated at the base section by the compressive resultant displaced from 
the axis of the column (see Figure 2.7). The expression of cV  is: 

 AfkV cc 29.0=  (7) 



with cf  the concrete compressive strength (MPa), gAA 8.0= , where gA  is the gross 
concrete section and k is a function of the required ductility: is equal to 1 for 2≤µ , 
decreases linearly from 1 to 0.3 for 42 ≤µ< , and remains constant thereafter. sV  is 
the expression for the truss model and β= tanPVp , where β  is given in Figure 2.7. 

As indicated previously, the evaluation has been carried out taking into 
account the uncertain nature of the variables involved, on the action side, on the 
response side and on the capacity side. On the action side, the starting point has been 
the elastic response spectrum contained in EC8. The spectral ordinates of EC8 have 
been assumed as representing the 50% fractile value of the response, and they have 
been transformed into random variables (r.v.) by multiplying the median ( )TS  by a 
r.v.: ( )Sαexp , lognormally distributed and with unit median. 

Non-linear response behavior has been described through what is commonly 
called strength reduction factor, representing the ratio between the strength needed in 
case of elastic response and the minimum strength a structure must have still 
compatible with its ultimate deformation capacities. The expression adopted for 

( )Tr ,µ  is the one proposed by Hidalgo and Arias (1990): 
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where T is the period of the structure and okT  is a parameter depending on the 
expected frequency content of the motion. The previous expression has been 
assumed to give the median value of ( )⋅r , which is then randomized by 
multiplication for a r.v. ( )rαexp , log-normally distributed and having unit median. 

On the side of the capacity, the three quantities: flexural strength F, ultimate 
ductility uµ  and shear strength uV , have been treated as r.v.’s in the same way as the 
previous ones, i.e., by multiplying their median values by the three r.v.’s ( )Fαexp , 

( )µαexp  and ( )Vαexp , all having unit median and log-normal distribution. 

2.3.5 Quantification of risk 

If the response is in the elastic range, the maximum force on the pier is: 

 ( )TSAMF ag=max  (9) 

where gA  is the local value of the peak ground acceleration, and failure can only 

occur if maxF  exceeds the shear strength uV . In the inelastic range, the following 
equation applies: 
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where the dependence of F on the ductility actually required has been made explicit. 
Failure in this case can occur due to two different mechanisms: a flexural failure, if 
to satisfy (10) it must be uµ≥µ ; a shear failure if ( )µF  is larger than uV . 

The failure domain can in both cases be expressed as union of two domains: 

 )]()([][ µ≥µ∪µ≥µ=ℑ uu VF  (11) 
In order to calculate the probability content of ℑ  it is convenient to separate 

it into the union of two non-overlapping domains: 

 )}()({)]}()([]{[ µ≥µ∪µ<µ∩µ≥µ=ℑ uuu VFVF  (12) 
in which the first domain represents a flexural failure excluding shear failure and the 
second one a pure shear failure. The probability contents of the two domains are 
directly summable, while the total probability of failure includes a third contribution, 
i.e., the probability of a shear failure for 1<µ . Introducing the notations: 
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it can be shown that the probability for flexural failure conditioned to survival in 
shear is given by the expression: 
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while that for shear failure in the inelastic range is: 
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and that for elastic shear failure: 
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where in (18) the new symbols stand for: 
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In the previous equations, ( )⋅Φ  is the Gauss normal distribution function and 
ρ  is the coefficient of correlation between the r.v.’s X and Y: 
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similarly, ρ′  is the coefficient of correlation between X ′  and Y. 
The three integrals above are rapidly performed numerically. 

2.3.6 Selected results 

The procedure computes fP  in sequence for all bridges belonging to each of 
6 highways for which seismic evalua tion is warranted, according to the screening 
procedure illustrated previously. A sample of the results is presented graphically in 
Figure 2.8 and Figure 2.9, which refer to the longest highway (A1: Milano-Napoli), 
and to the most hazardous one (A16: Napoli-Canosa), respectively. 
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Figure 2.8. Risk of bridges in the A1 highway. 
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Figure 2.9. Risk of bridges in the A16 highway. 

In the horizontal axis the bridges examined are numbered in progression, their 
distance from the origin appearing in the lower part of the figure. The vertical axis at 
left gives the values of fP  corresponding to the spikes in the figure, while in the 
background the variation of the hazard is also given, with the values to be read in the 
right vertical scale. A distinction is made between single bent and frame-like type of 
piers. 

One can immediately note that while in the A1 only a few isolated bridges 
have values of fP  larger then, say, 0.10, in the A16 the risk is much more diffused, 

with a good number of bridges having a fP  close to 1, given the occurrence of the 
500 years event. 

Results for the six highways are summarized in Figure 2.10, which gives for 
the total population of bridges examined the distribution of the probabilities of 
failure. A systematic difference appears between the bridges of the two categories, 
with framed piers clearly more vulnerable than those with a single bent. For example, 

about 75% of the latter have a 210−≤fP , against 30% of the former. The difference 

becomes smaller, however, with increasing value of risk, and for 5.0>fP  the 
situation is inverted. 
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Figure 2.10. Cumulated frequency of probability of collapse of examined bridges.  

Continuous line: bridges with single bent piers; dashed line: bridges with framed piers. 

2.4 Acceptance criterion 

The values of fP  obtained with the procedure described in the previous 
paragraph represent a measure of the risk of the bridges: to judge whether they are 
acceptable or not an homogeneous reference measure is necessary. Among various 
alternative possibilities the choice has been made to use as acceptance threshold the 
safety provided by the modern codes for new structures. This choice might in 
principle be considered as overly conservative and uneconomical, as it is widely 
accepted that for existing structures the amount of retrofit can be somewhat less than 
“complete”, i.e., a lower safety level than for new ones can be accepted. 

But for the type of bridges under consideration, in which the vulnerable 
elements are essentially the piers, the economical arguments play differently than, for 
ex., in the case of substandard reinforced concrete or masonry buildings. In the case 
of bridges, the total cost of the intervention is made up principally by fixed costs, 
which do no depend on the amount of strengthening to be provided, while the extra 
cost due to extra strength is an insignificant fraction of the total cost. Thus, the 
attainment of a safety level equal to that for new structures is a logical target. 

Modern codes, however, are not explicit on the level of protection they 
provide: it should be inferred from the logic inherent in these documents. Eurocode 



8, for example, after stating its objective as that of ensuring, “with an adequate level 
of reliability”, that communications should not be disrupted as a consequence of 
seismic events, implements the concept in practice in the following way. 

The first step consists in selecting, according to the importance of the bridge, 
the return period ( RT ) of the design seismic event for the ULS. Given RT  (say, 500 
years) the corresponding seismic intensity is found and the design made accordingly. 

The design rules (analysis, dimensioning and detailing) are deemed to be such 
as to guarantee, with an adequate level of reliability, that, given the occurrence of the 
design event, bridges maintain their integrity and a limited capacity for traffic load, 
though they may need substantial repair work. The idea is therefore clearly expressed 
of the existence of a probability that a bridge, designed following the code and for an 
action of given return period, may collapse at the occurrence of this action. 

How high is this conditional probability is not to be found in the code, 
however, for reasons that are obvious. If, as in the present case, the order of 
magnitude of the probability inherent for ex. in EC8 is desired, it must be estimated 
by means of ad hoc analyses on representative designs. This is what has been 
actually done, by first selecting a number of possible candidate structures and finally 
by identifying one specific pier type and a single geometry. In detail, the pier is a 
single bent, with circular hollow cross section having an external diameter D=2.60 m 
and thickness of 0.30 m. The height is H=10 m and the mass at the top is 1,000 t, 
corresponding to a deck length of 40 m. 

The criterion adopted for the choice has been that pier dimensions should be 
related to actual strength requirements and not, as it is often the case, to ext raneous 
reasons as uniformity, aesthetic, etc. Regarding the height, it can be shown that an 
increase of it within reasonable limits would reduce the response and the necessary 
amount of reinforcement. 

The material properties have been chosen as follows. For concrete: average 
strength: cf  = 30 MPa (design: cdf = 20 MPa), average tensile strength: ctf  = 0.3 

32
cf  = 2.9 MPa, average ultimate compressive strain: cuε = 0.012. For steel: average 

strength: yf  = 500 MPa (design: ydf  = 380 MPa). 

The design peak acceleration has been set at gA = 0.35g, and the value of 
behavior factor given in EC8: q = 3.5 has been adopted. The design spectrum is that 
of EC8 for intermediate soil sites. 

2.4.1 Calculation of fP  for gA = 0.35g 

The rules in EC8 are such as to make shear failure practically a zero 
probability event. Hence failure can only occur due to exceedance of the available 
ductility. The mechanical model of the pier is the same used for the seismic 
assessment of existing piers, and is represented by a bilinear force-displacement 
relationship. Using mean values of the mechanical properties of the materials, the 
displacement ductility results to be: uµ  = 9.08. 



The failure condition writes as usual: 
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with the known meaning of the symbols. 
The quantities assumed as random are: F, uµ , ( )TSa  and ( )Tr ,µ . Each 

random variable is obtained multiplying the median values by a random variable 
( )iαexp , lognormally distributed with unit median. For the parameters of the 

distributions of the normal variables iα , the following values have been adopted: 
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the probability of failure can be expressed in closed form as: 
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and the integral evaluated numerically. 
The value of fP  obtained for the pier under consideration is: 

 2102 −⋅≅fP  (24) 
This value is in general agreement with the results of other studies on the 

subject. It should not be considered as a “rigid” reference: with different geometry 
and dimensions, different estimates of the parameters defining the randomness, 
possible inclusion of other parameters, refinements in the mechanical models, etc., 
the range of values could expand of one order of magnitude in both senses. 

If not in absolute terms, however, the result obtained is significant as a 
relative measure. The same mechanical models have in fact been used in the 
assessment of the existing and of the new bridges: the possible bias and deficiencies 
of the models should disappear in the comparison. The values of the parameters 
defining the randomness are either the same, or are reasonably differentiated for 
taking into account of the differences between the two situations. The arguments 
above support the conclusion that the values of fP  attached to each bridge provide a 
correct ordering criterion in terms of risk, and that the threshold separating the 
categories of acceptable and non acceptable risk is placed in a defensible position. 



2.5 Results and conclusions  

Starting from 1151 bridges with simply supported decks belonging to the 
Autostrade network, the screening procedure based on the comparison between the 
500 years return period hazard and their “natural” seismic resistance has reduced the 
number of those to be evaluated to 425; 307 of these bridges (i.e., those for which the 
data bank SAMOA allowed a reconstruction of their geometry to be made) have been 
evaluated quantitatively following the criterion of designing them according to the 
code of the time and then performing on them a reliability analysis. 

The measure of the risk adopted has been the probability of collapse 
conditioned to the local 500 years return period hazard. The values of Pf  obtained 
for the 307 bridges have then been compared with a reference value: Pf =10-2, 
considered to be representative of the safety provided by a modern code (EC8/2) to 
bridges of new construction. The result is that 155 bridges have a risk larger than or 
equal to the acceptable one. Only for about half of them, however, the difference 
with the target is really significant, while the rest has a risk within a narrow range 
around the target (values of Pf down  to ⋅5 10-3 are included in the count of 155). 
While for the former half an intervention of seismic retrofit is warranted per se, for 
the second half the decision of intervening should be based on a combination of 
factors, rather than just on seismic risk. 

As far as the procedure in itself is concerned, a few aspects are worth to be 
mentioned in concluding. The idea of utilizing the geometric data from a data bank to 
reconstruct the characteristics of the bridges by means of a simulated design has 
proven to be both accurate and very fast.  

The limits of the procedure are equally obvious as it advantages. Firs of all it 
presupposes the existence of a data bank of the type described in the paper, where the 
necessary data can be easily extracted from, which is other thing than to have the full 
design of the bridges informatically stored. Secondly, the procedure works reliably 
for bridge of simple structural types. Hyperstatic bridges, or even hyperstatic piers of 
simply supported bridges, cannot be designed automatically on the basis of the 
geometry alone, due to the multiplicity of the design options. These bridges, 
however, represent a small portion of the existing stock, so small that their seismic 
evaluation can be realistically carried out on an individual basis. 
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3 IMPORTANT PHENOMENA AFFECTING THE BRIDGE RESPONSE 

3.1 Multi-support excitation 

From the point of view of structural analysis, the most important implication 
of multi-support excitation is that the conventionally adopted assumption of equal 
seismic input under all the supports of a structure is a pure abstraction, acceptable 
only when dealing with buildings of moderate dimensions, and it is even farther from 
reality if extended- in-plan structures are to be studied. In some cases, such as long-
span isolated bridges like those examined in this report, due consideration should be 
given to the non-synchronism of the seismic action, since different input motions 
experienced at adjacent supports can significantly modify the overall structural 
response thus jeopardizing the design concept. It is in fact common to observe, in 
every major seismic event, spectacular failures of bridges due to unseating of the 
decks, which leave little doubt that considerable relative displacements can exist in 
the free-field, even between points a few tenths of meters apart. 

Studies on the response of extended- in-plan structures subjected to different 
motions at the supports have started some thirty years ago and continue until today 
(for ex., Bodganoff et al. 1965, Perotti 1990, Moerland et al. 1993), the recent ones 
making use of the stochastic models just mentioned. Many of these studies focus on 
the algorithm to obtain the response and are often illustrated with reference to simple 
examples having a scant connection with real design cases. Others, (for ex., Der 
Kiureghian and Neuenhofer 1992, Heredia-Zavoni and Vanmarcke 1994), are more 
design-oriented, in that they provide more or less simplified methods to account for 
the effects of the correlation between the support motions. 

No study is known which considers the inelastic behavior of the structure, 
excluding those by the authors (Moerland et al. 1993, Monti et al. 1995, 1996, Monti 
and Pinto 1998). This is surprising, because if it is true that present design practice is 
based on linear analysis, and that non- linear behavior effects are accounted for by 
means of a simple factor, there is a priori no reason to believe that this approach may 
extend its validity to non-synchronous situations, at least not with the same factors. 

This manifest lack of knowledge on the subject is reflected in modern seismic 
codes for bridge design, where the non-synchronous nature of seismic input is 
accounted for only by means of semi-empirical provisions for extra seating lengths, 
adequate joint gaps, minimum relative displacements between adjacent foundations. 

While seismic design codes cater pragmatically for this phenomenon by 
means of increasingly severe provisions, research is looking since many years now 
for more rational and substantiated answers. For these answers to come, two aspects 
need to be covered in sequence: a) acquiring a sufficient knowledge of the 
mechanisms underlying the spatial variability of the motion, dealt with in section 
3.1.1, and b) assessing through numerical studies its relevance on the response, 
possibly in terms articulated enough to be of direct use for design, as reported in 
sections 3.1.1.1 and 3.1.3 for conventional and isolated bridges, respectively. 



3.1.1 Soil motion 

As regards the representation of the soil motion including the phenomena 
producing multi-support excitation, a breakthrough has occurred with the installation 
of strong motion arrays. The approach consists in gathering data, and processing 
them on the basis of an assumed stochastic model. The information is sufficient to 
implement but the simplest of the models, i.e., second moment fields fully 
characterized by the power spectral densities at each station and by a coherence 
spectrum, assumed to depend only on the relative distance between stations. The 
simplicity of this model needs not to be emphasized, as well as its dubious 
applicability to cases of pronounced soil inhomogeneity, not to speak of irregular soil 
profiles. Its merits, however, are great enough to justify its use for shedding light 
upon what really matters: the sensitivity of the structural response to the gross 
features of the phenomenon. 

3.1.1.1 Spatial model for ground motion 

From a physical point of view, the spatial variation of seismic ground motion 
may be schematically thought of as the result of the combination of three different 
phenomena: a) the incoherence effect, resulting from reflections and refractions of 
waves through the soil during their propagation (this effect is also referred to as 
geometric incoherence), b) the so-called wave-passage effect, that is the difference in 
the arrival times of seismic waves at different stations, and c) the site response effect, 
due to differences in local soil conditions under the various stations. 

Within the stochastic model assumed here, spatial variability is described by 
means of the cross-PSD matrix of the ground acceleration as follows 

 ( ) ( ) ( )ω×ω=ω AAUU dd SGS ,,&&&&  (1) 
where the symbol ×  denotes the Hadamard product by which each element of 

( )ω,dG  is multiplied by the corresponding element of ( )ωAAS , ω = circular 
frequency, and ( )ωAAS  is the (full) matrix of the ground acceleration cross-PSD 
functions at the N locations, given as 

 ( ) ( ) ( ) ( ) NljSSS
lljjlj AAAAAAAA K1, =ωω=ω=ωS  (2) 

and ( )ω,dG  is the (full) matrix of the complex coherency functions accounting for 
the three effects of incoherence, wave passage (Luco and Wong 1986) and site 
response (Der Kiureghian and Neuenhofer 1996) 
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The incoherence term decays exponentially with the circular frequency ω, 
with the horizontal separation distance d jl  between two stations j  and l  and, 
through the shear waves velocity vs , with the inverse of the mechanical 
characteristics of the soil. The second term depends on the projected horizontal 

distance d jl
L  along the wave propagation direction and on the wave circular 

frequency ω, and is a measure of the wave-passage delay due to the surface apparent 
velocity of waves vapp . The site response term is represented through a phase shift 
independent of the distance 

 ( )
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Im
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and dependent on the frequency-response functions of the soil columns at the 
different stations 
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which represent the amplitude of a harmonic motion at the surface of the ground 
caused by a harmonic motion of the form ( )tiωexp  at the bedrock level. It is 
important to note that the phase shift is completely defined in terms of the two 
frequency-response functions, which only depend on the properties of the two soil 
columns. In particular, it does not depend on the distance between the two stations, 
or the power spectral densities of the bedrock motion. It should be emphasized that 
the site-response component of the coherency function does not account for the 
effect of incoherence resulting from scattering of waves within the two soil columns. 
This contribution is rather included in the incoherence term. 

Apart from the site response effect, which depends on the locally selected 
PSD functions, in this study the coherency function is considered basically as a two-
parameter function, having lumped the mechanical characteristic of the soil and the 
factor α into a single parameter expressed as the ratio vs α, and the second one 
being vapp . When vs α → ∞ , the first term tends to 1 and the incoherence effect 
results from wave travelling and site effect only; if vapp → ∞ , the second term tends 
to 1 and the incoherence is due to the incoherence and the site effect only. Note that 
in this formulation the geometric incoherence effect is given a higher weight (square 
power) with respect to the wave-passage effect. 

In the soil frequency-response functions ( )ωjH  in (5) the parameters depend 
on the soil type (F=firm, M=medium, S=soft) as follows (Der Kiureghian and 
Neuenhofer 1996): 
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The PSD function adopted in this work is the well-known modified Kanai-
Tajimi spectrum of ground accelerations (Clough and Penzien 1975), expressed as 
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where S
j0  = scale factor, ( )ω

jCPS = normalized (two-sided) Clough-Penzien 

spectrum, ω f  and ζ f  may be thought of as characteristic ground frequency and 

damping, and ω g  and ζg  are the parameters of an additional filter, introduced to 
assure finite power for the PSD. All these parameters depend on the location j. 

Note that the PSD of the ground displacement process is: 
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The scale factors S
j0  at all location can be found based on either the peak 

ground acceleration or the peak ground displacement (PGA and PGD, respectively, 
selected in this work as equal for all locations) according to the following relation: 
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where pA j , .0 5 , pDj , .0 5  = peak factors corresponding to a 50% probability of 

exceedance of the peak level (either PGA for the ground acceleration process or PGD 
for the ground displacement process) at location j.  

For a generic process Y, the peak factor can be calculated according to 
(Vanmarcke 1977): 
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where t s  = duration of the (stationary part of the) process and 

 ΩY

Y

Y
=

E

Var

&2

 (11) 

where E &Y 2  = mean square of the derivative of the process and Var Y  = variance 

(total power) of the process having PSD ( )ωYYS : 
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Note that ΩY  only depends on the shape of the PSD and not on the scale factor; thus, 
it can be written for the ground acceleration and the ground displacement processes, 
respectively, as: 
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where 
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The characteristic ground frequency ω f  of the Clough-Penzien spectrum 
depends on the soil type (F=firm, M=medium, S=soft) as follows (Der Kiureghian 
and Neuenhofer 1992): 
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while the other parameters can be determined as follows: 
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The PSD functions of the three soil types are presented in Figure 3.1 along 
with the acceleration and displacement response spectrum. 
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Figure 3.1. PSD and response spectra for soil types F, M and S. 



The values of Var*  and Ω  for the three soil types are: 

 Var F Var M Var SA A Aj j j

∗ ∗ ∗= = =( ) . ( ) . ( ) .92 055 62 764 45082  (19) 

Ω Ω ΩA A Aj j j
( ) . sec ( ) . sec ( ) . secF rad M rad S rad= = =46 276 21963 6 4977  (20) 

 Var F Var M Var SD D Dj j j

∗ ∗ ∗= = =( ) . ( ) . ( ) .0 78974 2 6690 21403  (21) 

Ω Ω ΩD D Dj j j
( ) . sec ( ) . sec ( ) . secF  rad M rad S  rad= = =15521 10578 0 5622  (22) 

Thus, the peak factor of the three soil types can be directly expressed as 
follows:  
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Note that from (9) it is observed that: 
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where σY Y
∗ ∗= Var  and ψsoil  is a function of the soil type and of t s  through the 

peak factors. 
For example, for a stationary duration t s = 20 sec, it is: 

ψ ψ ψF
2

M
2

S
220  sec 20  sec 20  sec( ) . ( ) . ( ) .= = =00612 01345 04342  (25) 

 
The above approach, where the soil motion is characterized by its PSD 

function, is sufficient to allow a random vibration approach, which will be adopted 
for the analyses of isolated bridges (section 3.1.3).  

On the other hand, if full nonlinear analyses under generated time histories 
are to be performed, a stochastic field needs to be generated. This is the procedure 
followed in the case of conventional bridges in section 3.1.2. 

A possible procedure to generate a stochastic field can make use of the so-
called spectral representation method (Shinozouka 1972). The space-time random 
field with zero mean, space-time covariance function ( )tdR , , d being the separation 
distance, and frequency-wavenumber (F-K) spectrum ( )ωκ,S , where κ = 
wavenumber, is here simulated through 
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in which ( )ηφ jn  are two sets of independent random phase angles uniformly distributed 

in ( ]π2,0 . 
In order to use the above equation, a discretization of the frequency-

wavenumber spectrum is to be performed. The F-K spectrum is obtained as fo llows: 

 ( ) ( ) ( )ωκΓ⋅ω=ωκ ,, SS  (27) 
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is the transform of the coherency function. Note that 
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∞

∞−

d  (29) 

which implies 
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that is, the power pertaining to a frequency is distributed among all the 
wavenumbers. 
In the definition of Γ only the module of the coherency function is employed 
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that is, only the geometric incoherence term is included in the F-K spectrum. An 
advantage of adopting Eq. (31) is that the resulting F-K spectrum is quadrant-
symmetric: 

 ( ) ( ) ( ) ( )ω−κ−=ω−κ=ωκ−=ωκ ,,,, SSSS  (32) 
and this permits to simplify the discretization of the spectrum. The concept of 
quadrant-symmetry was first introduced by Vanmarcke (1983). Note that coherency 
functions yielding quadrant-symmetric F-K spectra can depict only the incoherence 
(change in shape) of the seismic motions (Zerva 1992), and therefore the apparent 
propagation (wave-passage effect) of the seismic motions should be explicitly 
included in the equation of the simulated field, by means of the time-shift x vapp . 

The discretization is performed within the limits of an upper cut-off 
wavenumber κu  and an upper cut-off frequency ωu , beyond which the contribution 



to the total power can be considered as negligible for practical purposes. On the basis 
of regressions on the F, M and S spectra, these can be determined as follows: 
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The upper cut-off frequency was determined by satisfying the following condition 
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whereas the upper cut-off wavenumber was determined by satisfying the following 
conditions 
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where S
vs

f
max .≈ 2 218

αω
 = peak value of the spectrum, which occurs at the point 

with coordinates ( )fω≈ω=κ 123.0,0 . 
A way to check whether the upper cut-off frequency is correct for practical purposes 
is to make use of Eq. (30) as follows 
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Once the cut-offs are determined, the discrete wavenumber and frequency are given 
by 
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where M and L are powers of 2, and J and N are also powers of 2, such that J is 
greater or equal than the number of points for the discretization in space of the field 
(number of sites where the field is needed) and N is greater or equal than the number 
of points for the discretization in time of the field (number of points in the time 
histories). Note that J u∆κ = κ  and N u∆ω = ω . 

Eq. (26) can be rewritten so to allow the utilization of the FFT method, as 
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The two-dimensional FFT is to be applied to the term in the braces in Eq. (38). Due 
to the presence of η = ±1, a forward-forward FFT and a backward-forward FFT are 
to be performed. 

A different discretization scheme can be used (for ex., Zerva 1992) with: 
( ) κ∆+=κ 2

1jj  and ( ) ω∆+=ω 2
1nn  in order to obtain ergodicity in the mean. 

However, in this case the simulations obtained by means of Eq. (38) are already 
ergodic in the mean, because the value of the F-K spectrum at the origin 
( )0,0 =ω=κ  is zero (Shinozouka 1972), therefore the discretization in Eq. (39) can 
be used. 

As a last remark, note that the period of the simulations is 
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that is, it is always longer or equal to the duration of the generated motion. 
In order to account for the nonstationary nature of ground accelerations, the 

stationary time histories generated by means of Eq. (38) are modulated by means of 
an envelope function. The function chosen in this study is: 
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where t1 , t2  = ramp duration and decay starting time, respectively, tmax  = time history 
duration and β  = ratio of the amplitude envelope at tmax  to that during the stationary 
phase ( )21 ttt ≤≤ . In this work: t1 2=  sec, t2 14=  sec, tmax = 20 sec  and β = 025. . 

Velocity and displacement histories, which are needed in a multi-support 
analysis, are obtained by integration of the acceleration histories according to a 
method known as baseline correction (Jennings et al. 1969), which minimizes the 
errors introduced in the numerical integration when passing from accelerations to 
velocities and displacements. 

Figure 3.2 compares the auto-spectrum (left) and the autocorrelation function 
(right) of the simulations of Eq. (38) with the target spectrum in Eq. (7) and the 
target autocorrelation function for soil types F and M. The number of simulations 



performed was 70. It is seen that both the generated PSD and the generated 
autocorrelation practically coincide with the target PSD and autocorrelation. 
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Figure 3.2. Target and simulated PSD (left) and autocorrelation (right) 
 for soil types F and M. 

Figure 3.3 compares the coherency functions of the simulations with the 
target coherency functions at different stations having separation distance d=50, 100, 
150, 200, 250 and 300 m (note that in the figures ξ  stands for d) and for two values 
of the parameter αsv = 300 and 600 m/s. Also in this case 70 simulations were 
performed. It should be observed that for both values of the parameter αsv  the 
agreement is satisfactory. 

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Circular frequency (rad/sec)

C
o

h
er

en
ce

vs/α=300 m/s

ξ = 50 mξ = 100 m

ξ = 150 m

ξ = 300 m

target simulated

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Circular frequency (rad/sec)

C
o

h
er

en
ce

vs/α=600 m/s
ξ = 50 m

ξ = 100 m

ξ = 150 m

ξ = 300 m

target simulated

Figure 3.3. Target and simulated coherency functions 
 at different stations at distance ξ  for vs α= 300 (left) and 600 m/s (right). 

3.1.2 Conventional bridges 

The purpose of the study presented in this section is to gain insight precisely 
into this question: the relevance of non-rigid input motion on the peak inelastic 
response of bridge structures, and the extent of validity of the “q-factor” approach. 



It consists of a parametric analysis having a sufficient, although far from 
exhaustive, width of scope, whose essential elements are outlined here and described 
in full detail subsequently. Three bridge types are considered: they all have 6 spans, 
of 50 m length each; the superstructure is the same in all cases, while the (uniform) 
heights of the piers take the values of 7.5, 10 and 15 m. 

The soil motion is characterized by two different power spectral densities (the 
same at all stations in each case, therefore no site response is included), while the 
parameters controlling the loss of coherence have been made to vary between their 
respective extremes. Finally, the design of the piers has been made for three different 
values of the behavior factor and according to two strategies, i.e., either accounting 
for the non-synchronism of the input or neglecting it. 

3.1.2.1 Design of bridges 

The bridge under consideration is represented in Figure 3.4. It is a 6-span 
continuous deck with 5 piers of the same height H and of 2.5 m diameter. The span 
length is 50.0 m. The deck, transversely hinged to the piers and the abutments, has a 
dead load of 200 kN/m. The piers (acting as cantilevers) are considered as fixed on 
the soil. 

H

300 m

50 m 2.5 m

1 2 3 4 5
 

Figure 3.4. Schematic view of the bridge. 

All the analyses of the bridge have been performed in transverse direction. 
The design peak ground acceleration (PGA) has been taken as: 042. g q , where q  = 
behavior factor. 

Table 3.1. Values considered in the parametric study. 

Parameter Values 

Soil type Firm (F) Medium (M) 

Pier height H  (m) 7.50 10.00 15.00 

Behavior factor q  2 4 6 

vs α (m/s) 300 600 ∞  

vapp  (m/s) 300 600 1200 ∞  



 

The parameters considered in the study are: a) the soil type, b) the structure 
stiffness, represented by the piers height H , c) the design level, given by the 
behavior factor: q , and d) the coherency parameters: vs α and vapp . The numerical 
values assigned to the above parameters are indicated in Table 3.1. 

The choice regarding the soil type affects the values of the parameters in the 
PSD function in Eq. 7. The values adopted are obtained from Eqs. (17) and (18) and 
are listed in Table 3.2 for each type of soil. 

Table 3.2. PSD filter parameters for the soil types considered. 

Soil type ω f  (rad/sec) ζ f  ωg  (rad/sec) ζ g  

Firm (F) 15.0 0.6 1.5 0.6 

Medium (M) 10.0 0.4 1.0 0.6 
 

The three different pier heights are intended to produce three different 
degrees of bridge stiffness and have been chosen so as to get bridges with 
fundamental periods varying within rather large limits. The first three periods of 
vibration are listed in Table 3.3. 

Table 3.3. Periods of vibration of the bridges. 

Period H = 7 50.  m H = 10 00.  m H = 15 00.  m 

T1  (sec) 0.43 0.60 1.20 

T2  (sec) 0.40 0.57 0.84 

T3 (sec) 0.33 0.41 0.48 

 
The bridges have been designed elastically for non-synchronous as well as 

synchronous ground motion using accelerograms generated according to Eq. (38). 
The design has been made for the average of the maximum values of the response 
(bending moments and shear at the pier base) obtained using ten sets of 
accelerograms scaled according to Eq. (9) to a PGA of 0.42 g, divided by the 
behavior factor q. In these analyses, the piers cracked stiffness has been used, 
obtained from the uncracked stiffness (gross section) divided by a factor 2.5. No 
minimum reinforcement ratio was considered. The following material strengths have 
been used: for concrete f c = 35000,  kPa , for steel f y = 440 000,  kPa , with ultimate 
strains equal to εcu = 0 008.  and εsu = 010. , respectively. Material design factors were: 
1.5 for concrete and 1.15 for steel. 



By combining all the values of the parameters in Table 3.1 above, 216 cases 
resulted. Among those are the 18 bridges designed under synchronous soil motion 
(vs α = ∞ and vapp = ∞ ), corresponding to the usual design assumption adopted in 
engineering practice. 

Both linear analyses (for design) and nonlinear analyses (for verifications) 
have been carried out through step-by-step integration by means of the program 
ASPIDEA (Giannini et al. 1992), where each pier is modeled with two elements in 
series: a Takeda-type plastic hinge zone at the lower support, having fixed length 
equal to one-tenth of the pier height, and the remaining elastic part of the pier, whose 
flexibility is doubled to account for cracking. 

3.1.2.2 Elastic response 

It is known, (see for ex., Clough and Penzien 1975), that the response of an 
elastic structure subjected to non-synchronous input can be obtained from the 
superposition of two contributions: a dynamic component induced by the inertia 
forces and a so-called pseudo-static component, due to the differences in the support 
displacements. These latter can induce significant distortions in the structure thus 
modifying the internal forces with respect to the case of synchronous input. The two 
components can be synthetically represented at each time step by means of two 
values: the mean ground displacement under the supports, which corresponds to a 
rigid body motion of the structure and can be partly identified with the dynamic 
component, and the ground displacements standard deviation, which can be 
considered as representative of the pseudo-static distortion imposed to the structure. 
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Figure 3.5. Mean and standard deviation of ground displacements on soil F (left) and M (right). 



In Figure 3.5 the maxima of the two values attained during the ground 
displacement history are presented for soil types F and M and with values 
vs α = ∞300 600,  and  m/s for the geometric incoherence term. In each diagram four 
distributions corresponding to different values of the apparent velocity of waves 
vapp = ∞300 600 1200, ,  and  m/s (wave-passage effect) are represented. It should be 
kept in mind while observing Figure 3.5 and the following ones that geometric 
incoherence (i.e. that ruled by the first term in Eq. 3) decreases as vs α increases 
from 300 m/s to ∞  m/s. In each diagram the wave-passage delay (i.e. that ruled by 
the second term in Eq. 3) decreases as vapp  increases from 300 to ∞  m/s. 
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Figure 3.6. Bridge H=10.0 m on soil F. Total and static forces 
 for vs α = 300 m/s (top), vs α = 600 m/s (middle), and vs α = ∞ m/s (bottom). 
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Figure 3.7. Bridge H=10.0 m on soil M. Total and static forces 
 for vs α = 300 m/s (top), vs α = 600 m/s (middle), and vs α = ∞ m/s (bottom). 

For soil F an evident phenomenon is the sensible reduction of the mean 
displacement for increasing geometric incoherence, therefore we expect a reduction 
of the dynamic component as vs α decreases from ∞  m/s to 300 m/s. For soil M this 
is less evident and we rather expect an increase of the dynamic component when 
vapp = 300 m/s. For both soils a remarkable increase of standard deviation is observed 
as vs α decreases but this phenomenon is less evident as vapp  decreases from ∞  to 
300 m/s. Therefore, high pseudo-static distortions are expected either for low values 
of vs α or, if vs α = ∞, for low values of vapp . Note that in all cases the variation of 



vapp  has a notable effect only for vs α = ∞, while in the presence of a certain degree 
of geometric incoherence its effect is sensibly reduced. 

In Figure 3.6 and Figure 3.7, at left, are the envelopes of the maximum total 
shear forces acting on each pier derived from non-synchronous linear dynamic 
analyses, while at right are the envelopes of the maximum pseudo-static component 
of the shear forces, derived from linear static analyses by applying the displacement 
histories at the pier supports. The results are presented for the bridge with 
H = 10 00.  m only, but the comments made in the following apply also to the bridges 
with H = 750.  and 15.00 m which show similar force distributions. 

 
We comment first the total force distributions (left-side diagrams) to evaluate 

the effects of geometric and wave-passage incoherence on the bridge response. The 
extreme cases are those with maximum incoherence vs α = 300 m/s and vapp = 300 
m/s (dashed lines in Figure 3.6 and Figure 3.7, top) and those with perfect coherence 
corresponding to the synchronous support motion cases (solid lines in Figure 3.6 and 
Figure 3.7, bottom). 

For these latter cases it should be observed that the total shear force 
distribution follows essentially the shape of the first mode of vibration of the bridge. 
In the other cases it is seen that for increasing incoherence (decreasing values of 
vs α and vapp ) the responses show a flattened shape, thus suggesting that higher 
modes are excited by multi-support input. 

A first important effect that can be noted by comparing the cases of fully 
synchronous input (solid lines in Figure 3.6 and Figure 3.7, bottom) with all other 
cases in which some degree of uncorrelation of geometric nature is present (all lines 
in Figure 3.6 and Figure 3.7, top and middle) is that the synchronous forces are 
systematically larger, although to different degrees. If confirmed by non- linear 
analyses, this fact would be comforting, since it would mean that bridges designed 
disregarding the multi-support excitation (as in the usual practice) would be 
automatically covered against non-synchronous effects. 

For the case of incoherence due to wave-travelling alone (Figure 3.6 and 
Figure 3.7, bottom), a reduction of the forces in the central pier is observed, whereas 
the forces acting on the lateral piers are increased with respect to the synchronous 
case (solid lines). Only when the wave-passage delay becomes large (vapp = 300 m/s) 
there is a substantial reduction in the forces for all the piers. In the presence of 
incoherence due to wave-passage alone, a clear directionality in the response is 
observed. This phenomenon is already triggered for vapp = 1200 m/s, that is for trains 
of waves arriving at two consecutive supports with a time delay of only 4/100 
seconds, and it is due to the fact that the second term in Eq. 3 depends on the sign of 
the separation distance ξ . Since the first term describing the geometric incoherence 
effect is independent of the sign of ξ , when it increases the response distribution 
tends to be more symmetric. 

The possibility of coincident resonance, i.e. a phase-matching between the 
excitation wave and the natural wave in the structure (Lin et al. 1990), was not 



investigated, because this phenomenon occurs only for the case of wave-travelling 
incoherence, and it is beyond doubt that in many situations geometric incoherence is 
a more credible source of uncorrelation than that due to deterministic wave-
travelling. 

A confirmation of this and of what already observed in Figure 3.5, is that the 
response to multi-support excitation is not significantly influenced by the wave-
passage effect when high geometric incoherence (low values of vs α) is present: the 
left-side diagrams in Figure 3.6 and Figure 3.7, top and middle, show essentially the 
same force distributions for different values of vapp . As already remarked in the 
comments to Eq. 3, this is mainly due to the fact that the term containing vs α in the 
coherence function is squared. 

In comparing the left-side diagrams (total shear forces) with the right-side 
ones (pseudo-static shear forces) a first obvious observation is that in the cases of 
synchronous or nearly synchronous seismic motion the contribution of the pseudo-
static component (right side diagrams in Figure 3.6 and Figure 3.7, bottom) is zero or 
negligible, since synchronous seismic input by definition does not introduce 
distortions in the piers. 

It is seen that the contribution of the pseudo-static component to the total 
shear force becomes more and more significant as the geometric incoherence 
increases. For the lowest value considered of vs α = 300 m/s (Figure 3.6 and Figure 
3.7, top) the pseudo-static forces are about 50-80% of the total forces for the mid pier 
and about 80-100% for the lateral piers. In these cases, i.e. when the geometric 
incoherence is high, the effect of the other component is almost negligible. On the 
other hand, when the wave-passage delay only is present (Figure 3.6 and Figure 3.7, 
bottom), its effect remains very low for vapp = 1200 m/s (less than 1% for the mid 
pier) and low up to vapp = 600 m/s (25-50% for the mid pier). 

An unexpected behavior occurs for vapp = 300 m/s, where the pseudo-static 
component is greater than the total shear force (about 200% for the lateral piers). In 
these latter cases the contribution of the dynamic forces reduces the effect of the 
distortions introduced in the structure by the non-synchronous soil displacements. 
This fact is physically explainable, since the maxima of the two components do not 
necessarily occur in phase. 

As a final remark, for low values of the geometric incoherence (e.g. for 
vs α = ∞ m/s, Figure 3.6 and Figure 3.7, bottom) the wave-passage delay tends to 
decrease the total shear forces on the pie rs, while it tends to increase the pseudo-
static components. The opposite occurs for high values of the geometric incoherence 
(e.g. for vs α =300 m/s, Figure 3.6 and Figure 3.7, top). 

 
 



3.1.2.3 Non linear response of bridges to multi-support excitation 

Non linear analyses of bridges designed either accounting for multi-support 
excitation or neglecting it have been carried out under the same ground motion 
histories used for non-synchronous design, with PGA = 0.42g. The results are 
presented in the following. 

3.1.2.4 Bridges with non-synchronous design 
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Figure 3.8. Bridge H=7.5 m on soil F and M. Required ductility 
for vs α = 300 m/s (top), vs α = 600 m/s (middle) and vs α = ∞ m/s (bottom). 
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Figure 3.9. Bridge H=10.0 m on soil F and M. Required ductility 
for vs α = 300 m/s (top), vs α = 600 m/s (middle) and vs α = ∞ m/s (bottom). 

In Figure 3.8 and Figure 3.9 the results are presented in terms of required 
displacement ductility for the bridges with H = 75 100. . and  m  only, on soil types F 
and M with values vs α = ∞300 600,  and  m/s for the geometric incoherence term. In 
each diagram, for each value of the structure behavior factor q= 2, 4 and 6 adopted in 
the design, three curves obtained for vapp = ∞300 600, and  m/s (the wave-passage 
effect) are represented. For the sake of clarity, the curves relative to vapp = 1200 m/s 
are not represented. 

 



As a general comment, one has to observe that the correlation between q-
factors and requested ductility is reasonably good, at least for the central piers. 

A first important point to note is that bridges designed for multi-support 
excitation show relatively uniform displacement ductility demands to the different 
piers, at least for the lower two values of q. This is not exactly what inelastic 
analyses usually reveal for bridges designed with a rigid base motion, and this can be 
checked for in Figure 3.8 and Figure 3.9, bottom, where the solid lines represent the 
bridges designed for synchronous input. 

A second point of systematic nature that goes together with the one 
previously mentioned is a noticeable trend to increase the ductility demand in the 
lateral piers with increasing uncorrelation of the motions, especially when this is of 
the geometric type and for higher values of the q-factor. To check this, compare for 
example the top Figures with the bottom ones in Figure 3.8 and Figure 3.9. On the 
other hand, when the geometric uncorrelation is high, in most cases the contribution 
to the ductility demand of the other source is almost negligible, a fact which was 
already noted in terms of forces in the linear case. 

This result can be explained by looking at the diagrams obtained from the 
linear analyses shown in the preceding paragraph, where the pseudo-static 
component of the shear force is compared to the total shear force acting on the piers. 
In case of high geometric incoherence, the shear forces on the piers are primarily due 
to the motions at the supports, which are imposed pseudo-statically, while the 
dynamic response component is very low. Thus, the design forces result to a large 
extent from the pseudo-static forces, deriving from a ground motion affected by the 
q-factor. When analyzing the bridge in the non- linear field, the pseudo-static 
displacements imposed at the supports are q times those adopted in the design and 
therefore they produce a request of ductility in the piers which is very close to q. The 
remaining part of the displacement of the piers derives from the dynamic response of 
the bridge. For low that this latter can be, the required ductility can only further 
increase. For example, in the bridge with H = 7 5.  m  on soil M and vs α=300 m/s the 
required displacement ductility in the piers designed with q=2, 4, and 6 is about 2, 4 
and 7, respectively. 

When the pseudo-static component is only a small part of the total force 
(cases with vs α = ∞, Figure 3.8 and Figure 3.9, bottom), the request of ductility 
depends on the dynamic response of the bridge which is obviously conditioned by its 
geometrical and mechanical characteristics. For the cases considered in this study, 
the effect of vapp  becomes significant as soon as it takes on lower values (vapp = 1200 
(not shown) and 600 m/s), in which cases it is also accompanied by the already noted 
directionality effect. This effect tends systematically to extract a larger amount of 
ductility from the last encountered piers. 

 
In concluding this section, it appears that the q- factor approach can be 

extended to non-synchronous design, with a degree of accuracy which is often better 
than for synchronous design. More explicitly, it has been found that bridges designed 
elastically for a non-synchronous input of given stochastic properties and affected by 



a q-factor, if analyzed inelastically for the same non-synchronous motion with q = 1, 
exhibit displacement ductility demands which are in good accordance with the 
selected value of q. It has been shown that this depends on the notable reduction of 
the dynamic response component with respect to the pseudostatic one. 

3.1.2.5 Bridges with synchronous design 

This section tries to provide an answer to the following question: what 
happens to bridges designed for a rigid input motion in case they are subjected to 
motions having the same frequency content but varying types and amounts of 
correlation between the support points? 
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Figure 3.10. Bridge H=7.5 m on soil F and M. Synchronous Design (SD). 
Required ductility for vs α = 300 m/s (top), vs α = 600 m/s (middle), and vs α = ∞ m/s (bottom). 
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Figure 3.11. Bridge H=10.0 m on soil F and M. Synchronous Design (SD). 
Required ductility for vs α = 300 m/s (top), vs α = 600 m/s (middle), and vs α = ∞ m/s (bottom). 

As in the previous section, the results are presented in terms of required 
displacement ductility. The results of bridges with H=7.5 and 10.0 m only are 
presented, on soil types F and M with values vs α = ∞300 600,  and  m/s for the 
geometric incoherence term. In each diagram, for each value of the behavior factor 
q = 2 4 6,   and  adopted in the design, three curves obtained for vapp = ∞300 600,  and  
m/s (the wave-passage effect) are represented. Also in this case, for the sake of 
clarity, the curves relative to vapp = 1200 m/s are not represented. 



We first comment on the top Figure 3.10 and Figure 3.11, i.e., the ones 
containing the cases of largest geometric uncorrelation. We know from the previous 
section that the response is due mainly, when not exclusively, to the imposed pseudo-
static differential displacements at the piers bases. Wave propagation effects are 
irrelevant in this case. The results in Figure 3.10 and Figure 3.11, top, come to no 
surprise: in the rigid base design the lateral piers are subjected to lower forces than 
the central ones, and are consequently weaker. Since the soil displacements are such 
as to impose almost equal distortions to all piers, the weakest ones are called to 
greater ductility demands. This leads to the situation illustrated in the Figure 3.10 and 
Figure 3.11, top, where the central piers have ductilities of about half of q, while for 
the lateral ones the values are close to q. 

The second extreme situation is when geometric incoherence is absent and the 
lack of correlation is only due to wave propagation (see Figure 3.10 and Figure 3.11, 
bottom). In this case we observe, as in the previous section, a significant sensitivity 
of the results to the parameter vapp , for a given value of q. 

Overall, however, in almost all cases the presence of a certain amount of 
incoherence acts towards reducing the ductility demand in the central piers and 
increasing that in the lateral ones, with respect to the limit case of synchronous 
motion. This fact is significantly corroborated for the higher values of q. In any case, 
the values of the requested ductilities are still quite close to the selected values of q. 

 
In concluding this section it appears that designing for a rigid motion 

provides the bridge with a higher global strength than for a non-synchronous motion. 
The request of ductility is not as uniform among the various piers as observed for the 
bridges designed for multi-support excitation, but the values are well below the 
selected q- factors, with the only exception of a few sporadic cases. This amount of 
strength is enough to cope with the possibility of receiving a non-synchronous 
motion. The only exception has been observed for the lateral piers in the bridge with 
H=7.5 m, for which the rigid base assumption adopted in the design leads to a 
request of ductility close to the q-factor. 

3.1.2.6 Conclusions regarding conventional bridges 

The essential facts emerging from the study are easier to express than it might 
be supposed from the multiplicity of different cases that have been examined in the 
previous sections. It all descends from the model that has been assumed for 
describing spatial variability. In this model, the power density correlation function is 
the product of two terms. The first one, which rests on qualitative physical bases, 
uncorrelates the motions at different points exponentially with the product: 
ω ρd Gij , where G and ρ  are the shear modulus and the density of the soil, 
respectively. The second one represents the correlation between two generic points 
simply due to a time lag d vij app  in the arrival of the waves. 

Once vapp  fixed, samples taken from the stochastic field represented by the 
second term only would be trains of waves travelling with the same speed and 



differing from one to another by random phase angles only. Roughly speaking, the 
second term has somewhat the nature of a deterministic model, whose effects on a 
given bridge structure can, at least qualitatively, be anticipated. Incidentally, it is the 
only term usually considered in the design of pipelines. The first one, on the 
contrary, is of purely stochastic nature: when ω ρd Gij  takes on large values the 
motions at two points become statistically uncorrelated (and, given the implicit 
assumption of gaussianity, also independent), so that at a given instant in time the 
two motions might hypothetically be the same but opposite in sign. 

Adhering to the recommendations contained in several modern bridge codes, 
to consider spatial variability of ground motions in the case of long bridges, three 
representative bridge models have been selected and designed for spatial variability, 
assuming a variety of combinations for the absolute and relative importance of the 
two terms of the coherence function, for a total of 216 cases. The designs have been 
made elastically, for different values of the q- factor. 

The first question a bridge designer would probably like to ask is whether 
accounting for spatial variability leads to larger amounts of reinforcement, for a 
given value of q, than what one would obtain by ignoring it. The analyses made 
allow to answer to this question both in global terms as well as with more articulate 
distinctions. In global terms, it has been found that incoherent motions lead to a 
decrease of the design forces, hence to lower amounts of reinforcements, with 
respect to the synchronous ones. This result admits no exceptions, for the cases 
considered. 

Obviously, the amount of the decrease is very variable, depending on the 
particular combination of the parameters and, given these latter, it varies from pier to 
pier, with a systematic trend to be larger for the central piers and practically nihil for 
the lateral ones. 

In more detailed terms, it is of interest to discern the role played by each of 
the two components of the coherence function. When the motions (accelerations) 
input to the supports are (almost) independent (i.e. the first term is dominant), the net 
dynamic excitation tends to zero. In this case the response becomes of purely static 
nature, and it is due to the differential displacements of the ground at the supports. 
Since the motions are already uncorrelated, the effects of the second term are 
negligible, whatever its value may be. The amplitude of the differential 
displacements and, hence, of the forces induced in a given structure, is directly 
related to the assumed shape of the power density spectrum of the ground motion. 

When the first source of incoherence is absent, on the other hand, the degree 
of uncorrelation produced by wave travelling is rather limited, for the range of 
apparent velocities one would consider more frequently (say, in excess of 500 m/s), 
and the effect on the response consists essentially in a reduction of the dynamic part 
due to the incomplete synchronism of the excitation. It requires to have ve ry low 
values of vapp  in order to start seeing significant effects of relative displacements 
between the supports, but in this case we assist also to a significant reduction of the 
dynamic contribution to the response. 



After having looked into the nature of the effects of spatial variability, and 
having designed a number of bridges for these effects, it is all too natural to check 
whether the inelastic response is consistent with the expectation that ductility 
demands are of the same order of the q-values used for the design. 

Here again there could be an answer in global terms, that would be outright 
positive, even more favorable than what one is accustomed to accept in the case of 
rigid motion design, and one with finer distinctions. To limit these latter to the 
essential, one might say that the ductility demand gets closer to q when the 
uncorrelation of the motions due to the first term increases. There is a simple 
physical explanation for that, not worth to be repeated here, especially since beyond 
this due verification of the validity of the q-factor approach for non-synchronous 
excitation there is still a major issue ahead to be discussed. 

At the design stage, the quantification of the spatial variability cannot be but 
affected by a large degree of uncertainty. It is true that uncertainty is also large in the 
prediction of the local frequency content of the motion, but this aspect is covered in 
most cases by the codes, which in turn rely on large amounts of statistical 
information, so that the spectral shapes can be reasonably accepted as conservatives 
estimates of “uniform risk” functionals. On the other hand, no “envelope” concepts 
can be applied to the quantification of the degree of correlation: at most one might 
consider upper and lower estimates. But the chances that the future earthquakes will 
be characterized by the amount and type of correlation assumed in design are really 
slight. In the light of this basic uncertainty, what is the appropriate procedure for 
ensuring an adequate degree of reliability to the design? 

Excluding any attempt to sophisticated approaches, whose reaches in this 
specific case appear as limited, the problem has been posed in the following terms. 
Since it would not be sensible to design for spatial variability and then to check the 
design for the case of a synchronous earthquake, which is clearly an abstraction, the 
reverse has been made, i.e., to design for the abstraction, which means following 
consolidated practice, and then see if and how large inadequacies of under- or over-
design this practice involves. 

The results of this last part of the study have been illustrated and commented 
in the appropriate section. They are summarized again since they might be assumed 
as the conclusion of the whole study: designing for a rigid motion provides a global 
upper bound of the response and therefore a globally conservative design. There is 
difference, however, between the rigid and non-rigid design in how the strengths are 
distributed among the different elements. In the rigid case, the distribution follows 
essentially the shape of the dominant mode, while in the other one, the strength 
requirements tend to be uniform. 

It is difficult at this point to resist the temptation of offering some practical 
suggestion, even if this is beyond the intentions and especially the reach of the study 
performed. The fact could be noted, however, that the higher the selected q-factor, 
the larger the difference between the requested ductility in the lateral and the central 
piers, when uncorrelation of motion is present. In those cases, in order to obtain a 
uniform request of ductility in all the piers, it would be beneficial to halve the design 



forces in the central piers, which always show a ductility request of about 0.5q under 
multi-support excitation. 

It is understood that the results obtained in this study are strictly dependent on 
the extremely regular bridge configuration examined and on the model describing the 
spatial variability of the seismic motion. Additional investigations are needed to 
study the response of irregular bridges with piers of different heights under non-
synchronous seismic action modeled with different coherence functions. 

3.1.3 Isolated bridges 

For the case of isolated bridges, present design practice is based on a linear 
analysis, where the protection offered by the non- linear behavior of the isolators is 
globally accounted for by means of a simple factor. In principle, there is no evidence 
that this approach may extend its validity to non-synchronous situations, or at least 
not with the same protection factors. Thus, the purpose of this section is to make a 
further step into this question: the relevance of non-rigid input motion on the 
inelastic response of isolated bridge structures, and the extent of validity of the 
“protection factor” approach. 

A parametric analysis has been conducted of a bridge with 6 spans, of 50 m 
length each and piers 10 m tall, same as that analyzed in section 3.1.2 and 
represented in Figure 3.4, but in this case it is equipped with isolators that are 
designed according to common design practice. The bridge is subsequently analyzed 
under different multi-support excitation conditions. The method employed is that of a 
stationary random vibration analysis where the non- linear isolators are linearized 
with Kelvin elements, having effective stiffness and equivalent damping determined 
through an equivalence equation. To this purpose, the accuracy of three different 
equations is evaluated. 

The soil motion is represented through a second moment random field fully 
characterized by (equal or different) power spectral densities at each station and by a 
coherence spectrum, assumed to depend on three different sources of incoherence. 
All the parameters controlling the loss of coherence have been made to vary between 
their respective extremes, as done in section 3.1.2 and reported in Table 3.1. 

3.1.3.1 Bridge model and equivalent stiffness and damping ratio of the isolator 

The bridge is modeled as an elastic system, where both the piers and the 
isolators are considered as elastic. As regards the piers, this assumption is valid if the 
adopted procedure for the design of the isolators is such to maintain them in the 
elastic range, whereas the isolators, which of course enter well into the inelastic 
range, are represented through equivalent linear elements whose hysteretic damping 
is condensed into a viscous damping ratio. Both these quantities can be expressed as 
function of the required ductility. 

The equivalent stiffness keq j,  and the damping ratio ξeq j,  of the j N= 1K  
isolators, equivalent to their hysteretic dissipation can be evaluated according to 



different criteria. Three are selected in this work, based on kE  = isolator elastic 
stiffness and α  = isolator hardening ratio: 

a) the first one is that adopted in AASHTO (Guide specification 1991) 
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b) the second one is that presented in (Hwang et al. 1995) 

( ) 2

2,
1

737.01
11

−















µ

−µ
−

µ

−µα+
=

j

j

j

j
Ejeq kk     

( )( )
( )[ ] α−

µ

−µα+µ

−µα−

π
=ξ

10611

112
58.0

,
j

jj

j
jeq  (43) 

c) the third one is that presented in (Hwang et al. 1994) 
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On passing, it should be observed that the first of the above equations is 

obtained through simple geometrical considerations, while the other two have been 
calibrated on the response of sdof oscillators: in particular, the second one is just a 
correction of the first one in order to maximize the accuracy in predicting the 
inelastic maximum response of bi- linear elastic bearings, while the third one is based 
on the optimal prediction of the period shift of a base-isolated regular bridge. 

Note that the purpose of the equivalence is to substitute the hysteretic 
isolators with equivalent Kelvin elements. A Kelvin element, a linear spring in 
parallel with a pure viscous damper, satisfies the following equation: 

 f k y c yj eq j j= +, &0  (45) 
which can be transformed in the frequency domain as follows: 

 ( ) ( ) ( )ωω+=ω iyickif jjeqj 0,  (46) 
Its transfer function from deformation y to force f  is therefore: 

 ( ) jeqjeqjeqjjeqj kikickiH ,,,0, 2 ξ+=ω+=ω  (47) 
where the real and the imaginary parts are the non-negative real-valued storage and 
loss moduli, respectively. This representation will be used in the following 
developments. 

3.1.3.2 Equations of motion of the bridge 

The equation of motions for the deck (subscript D) masses and the pier 
(subscript P) masses with the interposed isolators (subscript I) are, respectively:  

( ) ( ) ( ) ( ) ( ) 0XKXCUXXKUXXCUXXM =++++++++++ IIIIIPDIPDIPD
&&&&&&&&&&

( ) ( ) ( ) ( ) ( ) 0XKXCXKXCUXM =−−+++ IIIIPPPPPP
&&&&&&   (48) 



where ( )jeqjI kdiag ,=K . Eq. (48) can be written in matrix form as: 
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If it is assumed that: a) the contribution to the overall damping given by 
C XD I⋅ & , C XD P⋅ &  and C XP P⋅ &  is negligible with respect to that of the isolators 
C XI I⋅ & ; b) C UD ⋅ &  can be neglected with respect to the other quantities on the left-
hand side of the equation. Thus, the resulting equations are: 
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The advantage of casting the equation in this form, rather than the more 
classical version in (Clough and Penzien 1975) where a dynamic and a pseudo-static 
part are separately solved and subsequently added up, stems from the fact that this is 
computationally of great convenience, since it allows to directly obtain the 
expression of the PSD matrix of the isolators response, instead of deriving it as PSD 
of a sum process, where also the cross PSDs between the dynamic and the pseudo-
static process must be evaluated. 

The whole problem can then be stated as: 

 FUUµXKXCXM =+=++ κ&&&&&  (51) 
 

3.1.3.3 Response of the isolators 

Using elementary notions of stationary random vibration theory, the matrix of 
the response PSD is obtained by filtering the cross-PSD matrix ( )ωFFS  of the action 
F with the frequency response matrix ( )ωiXH  of the system 

 ( ) ( ) ( ) ( )ω−ωω=ω ii T
XFFXXX HSHS  (52) 

where the first N values on the diagonal are the auto-PSD of the isolators.  
The cross-PSD matrix ( )ωFFS  in (52) is obtained from the cross-correlation 

matrix of the action F: 
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which is then Fourier-transformed into the cross-PSD matrix 
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(where in the above equation the relation S SU Uo o= && ω2  has been used).  
The frequency response matrix ( )ωiXH  in (52) can be obtained from the 

modal frequency response (diagonal) matrix 
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


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where $ω k  is the circular frequency of the k-th mode and ξk  the associated modal 
damping. The frequency response matrix ( )ωiZH  is transformed into the frequency 
response matrix ( )ωiXH  through the eigenmatrices of the system (51), which implies 
that an eigenproblem has to be solved. 

Before solving the eigenproblem, it should be noticed that the matrices M and 
K in (51) are non-symmetrical. In this case, it is convenient to cast the equation in 
the following form: 

 && &X M C X M K X M F+ + =− − −1 1 1  (56) 
Thus, modal decomposition can be performed of the (assumed classically 

damped) eigenproblem  

 M K− =1 Φ Φ Λ  (57) 

whose solution is the eigenvalues matrix ( )2ˆ kkdiag ω=Λ  and the couple of 
eigenmatrices: the right-hand eigenmatrix Φ , and the left-hand eigenmatrix ΦL , for 

which the following relation holds: Φ ΦL
T = −1 . 

3.1.3.4 Treatment of damping 

The equations of motion can be uncoupled by writing X Z= Φ  

 ( ) YUUµMFF ZKMFZFCMFZ =+=++ −−−−−− κ&&&&& 111111  (58) 

where it is noted that the modal damping matrix $C M C C= =− −Φ Φ Φ Φ1 1
L
T  (where 

Φ Φ ΦL
T

L
T= =− − −1 1 1M M  is the mass-normalized left-hand eigenmatrix) is not 

diagonal, therefore the equations are not completely uncoupled. An analysis of the 
error resulting from neglecting the off-diagonal terms can be found in (Veletsos and 
Ventura 1986) where it is shown that for modal damping ratios lower than 30% the 
error is acceptable, if not negligible. 

Under this consideration, the modal damping ratios are obtained as 
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where the damping matrix ( )kω̂C  is built for each eigenvalue as follows (Zambrano 
et al. 1996): 
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where the numerator is the imaginary part of the transfer function (47) of the j-th 
isolator. 

With the values of the modal damping ratios in (59) the modal frequency 
response matrix ( )ωiZH  in (55) can be built and then transformed into the frequency 
response matrix ( )ωiXH  

 ( ) ( ) T
LZX ii FHFH ω=ω  (61) 

This expression, along with that of the cross-PSD of the action in (54), can be 
inserted into (52) to get the PSD matrix of the response. 

3.1.3.5 Iterative procedure 

The response of the bridge depends on the isolator stiffness and damping. 
Since this is evaluated with either (42) or (43) or (44) as function of the ductility 
required to the isolators, which in turn depends on the isolators characteristics, an 
iterative procedure must be followed. This can be summarized as follows: 

 
1) Guess value for the required ductility µ j  in all j N= 1K  isolators along the 

bridge (usually, µ j =1) 
2) Calculate the vector of the variances of the response of each isolator through (52) 

(that is, only the first N values on the diagonal need to be evaluated, since they 
are the auto-PSD of the isolators) 

 [ ] ( ) NkdSX
kk XXkisokiso K1Var ,

2
, =ωω==σ ∫

∞

∞−
 (62) 

3) Update the vector of the required ductility in each isolator 
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 where p is a peak factor taken as 2.5. 
4) Compare the ductilities with the current value: if convergence is attained then 

exit, else repeat procedure with the new estimate of ductilities. 
 



3.1.3.6 Design of the isolated bridge 

The bridge under consideration is represented in Figure 3.4 (in this case the 
hinges on top of the piers are replaced by isolators), purposely selected equal to that 
extensively studied in section 3.1.2. The piers height has been taken H = 10 m. The 
deck, transversely supported by isolators to the piers and the abutment s, has a dead 
load of 200 kN/m. The piers (acting as cantilevers) are considered as fixed on the 
soil. All analyses of the bridge have been performed in the transverse direction.  

The isolated bridge has been designed elastically for the transverse direction 
only, under synchronous ground motion ( vs α = ∞  and vapp = ∞ ) which corresponds 
to the usual design assumption adopted in engineering practice.  

In the elastic analyses performed to design the bridges, the cracked stiffness 
of the piers has been used, obtained from the uncracked stiffness (gross section) 
divided by a factor 2.5. The following material strengths have been used: for 
concrete f c = 35 000,  kPa , for steel f y = 440 000,  kPa , with ultimate strains equal to 
εcu = 0 008.  and ε su = 010. , respectively. Material design factors were: 1.5 for 
concrete and 1.15 for steel. 

The design has been made for the average of the maximum values of the 
response (force at the pier top) obtained using ten sets of accelerograms scaled to a 
PGA of 0.42 g. A protection level equal to µ = 4.2, which correspond to the design 
PGA= 0.10 g, was considered. For the design phase, the deck was considered as 
rigid, hinged on the piers and supported by rollers on the abutments. 

The design criterion aimed at equally sharing the total shear force among all 
the elements (piers and abutments), which basically imply that the same isolators are 
used on all the piers and abutments and that all the piers have the same strength. 

The design of the isolators is performed according to: 

 F
F

Y iso
D

,
,= max

µ
 (64) 

where FY iso,  is the isolator yield strength, FD,max  is the maximum force (average on 
10 analyses) transmitted from the deck to the pier below, and µ  is the reduction 
factor of this force. The isolator stiffness is obtained as: K FI Y= ⋅150 , which 
basically assures that the isolator yield displacement is always equal to 6 mm. The 
isolator hardening ratio b was selected as b b=  such that the hardening ratio of the 
pier- isolator system be equal to btot = 0.10. The value of b  is easily obtained from 
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where KP  is the stiffness of the pier considered as a cantilever. In the bridge 
examined, the isolators hardening ratio turned out to be: b ≈  0.03. 

The piers, of height H, are designed to satisfy the following inequality 



 ( ) oTDPisoYu NNcFFHM γ⋅∆⋅+⋅++⋅≥ maxmax,,  (66) 
where M u  is the resisting moment of the section at the pier base, FP ,max  is the base 
shear due to the mass of the pier itself and of the pier top (which are under the 
isolator), c is a friction coefficient, taken equal to 0.03 (teflon bearings assumed), 
ND  is the load applied on the isolator by the supported deck, NT  is the total load 
(deck+pier) considered lumped at the pier top, ∆max  is the maximum displacement 
(average on 10 analyses) at the pier top and γ o = 1 2.  is an overstrength factor 
recovering the uncertainties in the evaluation of FY iso, , c and ∆max . The 
reinforcement ratio in all piers resulted equal to 2.07%. Such conservative design 
procedure ensures that all the piers remain in the elastic range. 

3.1.3.7 Results of the analyses 

The bridge in Figure 3.4, whose isolators were designed with the above 
described procedure, was analyzed through stationary random vibration analysis to 
assess the effect of fully incoherent ground motion on the isolators response. In the 
linear bridge model, all isolators are substituted with equivalent Kelvin elements, 
with stiffness and damping proportional to the required ductility. 

It is known, (see for ex., Clough and Penzien 1975), that the response of an 
elastic structure subjected to non-synchronous input can be obtained from the 
superposition of two contributions: a dynamic component induced by the inertia 
forces and a so-called pseudo-static component, due to the differences in the support 
displacements. These latter can induce significant distortions in the structure thus 
modifying the internal forces with respect to the case of synchronous input. The two 
components can be represented at each time step by means of two values: the mean 
ground displacement under the supports, which corresponds to a rigid body motion 
of the structure and can be partly identified with the dynamic component, and the 
ground displacements standard deviation, which can be considered as representative 
of the pseudo-static distortion imposed to the structure. The ground displacements 
for the three types of soils can be evaluated through (24) and considering that all the 
analyses are performed under a PGA=0.42g: this corresponds to a PGD of 0.20 m, 
0.50 m and 1.70 m for the soil types F, M and S, respectively. Since the latter value 
appears unrealistically high, it has been decided not to include the soil type S in the 
analyses. 

It should be kept in mind while observing the following figures that 
geometric incoherence (i.e. that ruled by the first term in Eq. 3) decreases as vs α 
increases from 300 m/s to ∞  m/s. In each diagram the wave-passage delay (i.e. that 
ruled by the second term in Eq. 3) decreases as the apparent velocity vapp  increases 
from 300 to ∞  m/s. 

As reported in section 3.1.2, for soil F an evident phenomenon is the 
significant reduction of the mean displacement for increasing geometric incoherence, 
therefore we expect a reduction of the dynamic component as vs α decreases from 



∞  m/s to 300 m/s. For soil M this is less evident and we rather expect an increase of 
the dynamic component when vapp = 300 m/s. For both soils a remarkable increase of 
standard deviation is observed as vs α decreases but this phenomenon is less evident 
as vapp  decreases from ∞  to 300 m/s. Therefore, high pseudo-static distortions are 
expected either for low values of vs α or, if vs α = ∞, for low values of vapp . Note 
that in all cases the variation of vapp  has a notable effect only for vs α = ∞, while in 
the presence of a certain degree of geometric incoherence its effect is sensibly 
reduced. 

A first task pursued was to assess the relevance on the simulated response of 
the selected equivalence equation, either (42) or (43) or (44), referred to as: 
AASHTO, Hwang and CALTRANS, respectively. In Figure 3.12 the adopted 
equations are compared for two different hardening ratios: 0% and 3% (the 
CALTRANS equation is insensitive to the hardening ratio). It can be observed that 
major differences exist in the estimation of the equivalent damping ratio, with 
relative differences of the order of 300%, whereas for the effective stiffness ratio the 
differences are less evident with the only exception of the CALTRANS equations, 
which yields a lower stiffness reduction with increasing ductility. 
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Figure 3.12. Isolator equivalent damping and stiffness ratios as function of the required ductility 

according to Eqs. 42 (AASHTO), 43 (Hwang) and 44 (CALTRANS),  
with hardening ratio 0% and 3%. 

In Figure 3.13, the response of the isolators, in terms of peak displacement 
(where the peak factor is exactly computed), is represented for each of the above 
equivalence equations, compared with Montecarlo simulations on 300 nonlinear 
analyses. The benchmark cases considered are those on Firm and Medium soil, with 
either fully coherent or low coherence ground motion, corresponding to vs α  and 
vapp  equal to infinity and 300 m/s, respectively. All the comparisons above are 
conducted without accounting for the site response effect on the incoherence of the 
ground motion, but it is deemed that the conclusions reached above can be extended 
to the case of site response effect.  



It is seen that in all cases the best approximation to the Montecarlo response 
is obtained with the CALTRANS equations but it is recognized that the accuracy 
decreases with increasing incoherence. The weakness of the AASHTO equivalence 
equations can be attributed to the fact that those are obtained through simple 
geometrical considerations, whereas the other two equations are derived by 
minimizing the RMS error of the inelastic maximum responses of sdof bi- linear 
hysteretic isolators. The two equations have a satisfactory performance when the 
bridge deforms according to the first modal shape, whereas they have a lower 
accuracy for high incoherence. In the following analyses the equations (44) are 
adopted to linearize the isolators. 
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Figure 3.13. Validation of equivalence equations  
42 (AASHTO), 43 (Hwang) and 44 (CALTRANS) for Firm (left) and Medium (right) soil  

and with high (top) and low (bottom) coherence. 

For the cases examined above, in Table 3.4 the equivalent damping ratios and 
effective stiffnesses of the isolators are reported along with, in Table 3.5, the modal 
damping ratio ξk , computed with (59), of the first four modal shapes, for the bridges 
in full synchronism on soil types F and M (reference is therefore made to Figure 
3.13, top). It is noted that the AASHTO and Hwang equations yield approximately 
the same fundamental period, as expected because of the slight differences in the 
estimation of the effective stiffness, whereas the periods computed with the 



CALTRANS equation are systematically lower. On the other hand, it is noted that 
both the damping ratios of the single isolators and the modal ones are significantly 
higher in the two former equations, while the latter gives rise to low damping ratios. 
Thus, it can be said that the two former equations rely on the dissipation to predict 
the peak response of the isolators, whereas the latter, with lower damping ratios, 
relies on the stiffness. 

 
Table 3.4. Equivalent damping ratios with three different equivalence equations  

(A=AASHTO, H=Hwang, C=CALTRANS) for full synchronism. 

  Equivalent damping (%) and 
effective stiffness 

Eq. Soil 1 2 3 

A F 36.4 (.40) 41.2 (.30) 42.4 (.28) 

H F 13.4 (.48) 21.5 (.25) 25.7 (.18) 

C F 7.8 (.62) 10.4 (.41) 11.9 (.32) 

A M 44.8 (.19) 44.4 (.14) 44.0 (.13) 

H M 25.1 (.19) 30.8 (.13) 32.8 (.11) 

C M 10.2 (.43) 14.1 (.24) 15.8 (.19) 

 
Table 3.5. Modal damping ratios with three different equivalence equations  

(A=AASHTO, H=Hwang, C=CALTRANS) for full synchronism. 

  Modal damping (%) and period (sec) 

Eq. Soil ( )11 Tξ  ( )22 Tξ  ( )33 Tξ  ( )44 Tξ  

A F 41.6 (0.75) 32.0 (0.63) 24.1 (0.47) 26.6 (0.38) 

H F 22.3 (0.81) 14.6 (0.62) 9.0 (0.45) 7.9 (0.33) 

C F 12.2 (0.68) 9.2 (0.57) 6.7 (0.43) 6.7 (0.33) 

A M 44.4 (1.01) 35.1 (0.79) 35.4 (0.59) 34.9 (0.48) 

H M 30.8 (1.05) 21.9 (0.80) 20.6 (0.61) 18.9 (0.50) 

C M 15.3 (0.82) 10.8 (0.64) 7.2 (0.46) 7.0 (0.34) 

 
After having chosen the model to linearize the isolators, it is now possible to 

consider the isolators response under different incoherence conditions. For the sake 
of clarity, we recall that the overall phenomenon of multi-support excitation can be 
split into two parts: one is the so-called non-synchronism effect, which are the two 
effects of geometric incoherence and wave passage, the other is the site response 
effect. In Figure 3.14 the isolators response with no site response effect is 
represented, therefore only the case FFFFF and MMMMM are considered, that is, 



soil type F and M under all supports: on the left, the response under perfectly 
synchronous conditions is graphed, while on the right the effect of non-synchronism 
is represented.  
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Figure 3.14. Isolators response without site response effect: 
synchronous (left) and non-synchronous (right). 
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Figure 3.15. Isolators responses with varying site response effect:  
 one-step combinations (left) and three-step combinations (right) of Firm and Medium soil,  

synchronous (top) and non-synchronous (bottom). 



The non-synchronous action has a twofold effect: one is to reduce the peak 
response (which is more than halved for the case of soil F), the other is to break the 
modal response, which in the first case is driven by the first modal shape, while in 
the second becomes practically flat. It is therefore confirmed that non-synchronism 
has a favorable effect on the response of isolated bridges, as already reported in 
(Monti et al. 1995, 1996). 

The consequences of the site response effect are depicted in Figure 3.15 
where the effect of one-step and three-step variations are considered, for the case of 
synchronism and non-synchronism. Four different combinations between soil type F 
(Firm) and M (Medium) are considered, denoted with the sequence of soil types 
under the five piers of the bridge under consideration. One-step and three-step 
combinations are considered, defined as a change in the soil type in the mid pier and 
the three mid piers, respectively. It should be noted that fo r each combination, the 
reciprocal is considered as well, that is, both FFMFF and MMFMM are studied.  

From the diagrams, the following observations can be made: 
• when site effect is present, the response is only slightly affected by non-

synchronism; this essentially confirms the deterministic nature of the site 
response effect which implies the application of differential displacements at the 
supports, as opposed to the non-synchronous part of the action, which implies 
instead both a dynamic and a pseudo-static part, 

• the effect on the response of the one-step combinations is more significant than 
that of the three-step combinations, 

• reciprocal combinations produce similar response shapes. 
Site effect can be interpreted as a problem of differential displacements 

imposed at the pier supports. It has been noticed above that soil type F and M have a 
PGD of 0.20 m and 0.50 m, respectively, which can be appreciated in the case 
depicted in Figure 3.15 (top, left) where a differential displacement of about 0.20 m 
affects the isolators 2, 3 and 4. 
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Figure 3.16. Isolators response considering the complete ground motion model (black lines)  
and the simplified model with no cross-coherence terms for the site response (gray lines),  

for one-step combinations (left) and three-step combinations (right) of Firm and Medium soil. 



From the above, it can be concluded that, in case one wants to consider the 
presence of varying soil profiles under different support, the effect of non-
synchronism can be disregarded. 

Since we have now reduced the case of multiple-support excitation to a case 
where only the site effect is considered, one could wonder what is the difference in 
the global response if one models the site response effect considering only different 
soils in the diagonal terms of the PSD functions matrix (2), as opposed to the above 
described model where, in addition to this, all the off-diagonal terms in the 
coherency functions matrix (3) are calculated as function of distance-independent 
phase shifts in (4) and representing the cross-coherence among the different ground 
motions. In order to assess such difference, analyses have been carried out where the 
results obtained with the complete model of the ground motion are compared with 
results obtained by taking the site response coherence functions in (3) equal to 1. 
These comparisons are shown in Figure 3.16 for the same different soil combinations 
as above, but only for the case of full synchronism. 
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Figure 3.17. Isolators displacements obtained with Montecarlo analyses (dashed lines), 
compared to random vibration analyses with the complete ground motion model (black lines) and to 

the simplified model with no cross-coherence terms for the site response (gray lines): 
one-step (top) and three-step (bottom) combinations. 
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Figure 3.18. Isolators response with different number of Montecarlo analyses: 
cases MMFMM (left) and FMMMF (right). 

By observing the results it can be concluded that a model that does not 
account for the cross-coherence terms, yields quite different results, even though it 
should be recognized that the differences are in most cases acceptable. This amounts 
to saying, for instance, that time history analyses could be performed by applying, at 
different supports, accelerograms generated from different power density spectra, 
without introducing any significant error on the estimation of the peak response of 
the isolators. 

This is exactly what has been done in Figure 3.17 where the results of the 
random vibration analyses are compared with results obtained from Montecarlo 
analyses (dashed lines) on 100 samples, with accelerograms applied as mentioned 
above. It can be seen that for those cases with prevailing M soil (top-right and 
bottom-left) there are minor differences with respect to the case of the random 
vibration analysis with the complete model (black line), while for the cases with 
prevailing F soil (top-left and bottom-right) the differences are more significant but 
still acceptable.  

Thus, a conclusion is reached, of course relative to the cases at hand but of 
sufficient generality, that in case the site response effect is to be included into the 
analysis of an isolated bridge, an acceptable estimate of the isolators peak 
displacement can be obtained through Montecarlo nonlinear analysis. An optimal 
number of 10 analyses (Figure 3.18) can be selected to approximate with sufficient 
accuracy the exact result, thus confirming the deterministic nature of the site 
response effect. 
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3.2 Soil-structure interaction 

Soil-Structure Interaction (SSI) effects consist, by definition, in the difference 
in the structural response evaluated assuming an ideal rigid and the actual soil 
foundation, respectively.  

In general, the difference stems from two distinct physical causes. The first 
cause for a difference is due to the propagating nature of seismic disturbances in the 
form of waves, that makes the soil motion at any given instant generally different 
from point to point. The ensuing interaction effect with a spatially extended 
foundation is called kinematic interaction: a necessary condition for this effect to be 
of importance is that the foundation dimensions are of the same order of magnitude 
of the main wavelengths contained in the motion. The second cause for a difference 
is due to the inertia forces transmitted by the structure to the soil during the 
oscillations: these forces induce a deformation in the soil that adds up to the one 
existing in the free-field, leading to a modified translational component of the motion 
and to the presence of a rocking component, whose effect may become significant 
for tall and slender structures.  

Especially this second phenomenon, referred to as inertial interaction, has 
been the subject of intensive research over a period of thirty years and more; one 
could therefore expect by now the main parameters having influence on it to be 
adequately understood, and practical procedures available for taking it into account 
in design.  

A cursory glance at the evolution occurred in this field may serve to better ap-
preciate the scope and limitations of the present state of knowledge.  

The reference structural model on which the phenomenon has been studied 
has not changed over the years: an elastic, damped oscillator having a rigid mat 
foundation resting on, or partially embedded into, a homogeneous or stratified 
(visco-)elastic (hysteretic-)half space. While early studies (see for ex. Parmalee 1968, 
Tajimi 1969, Castellani 1970) provided fundamental insight into the problem, their 
generality was restricted by the then necessarily simple assumptions on soil profile 
and by the approximate solutions available for the dynamic impedances of the 
footings.  

Regarding this latter mixed boundary-value problem, accurate solutions for 
rigid footings started to appear by the end of the sixties and their production has 
continued until approximately the mid seventies (among the more recent contribu-
tions, see for ex. Veletsos and Verbic 1973, Luco 1974, Gazetas 1976): therefore, 
solutions are now available for rigid circular, rectangular and strip foundations on 
various combina tions of soil profiles (Gazetas 1983).  

Currently, efforts are concentrated in providing discretized impedance matri-
ces for general, excavated, spatial soil profiles (Wolf 1984, Apsel and Luco 1987, 
Gaitanaros and Karabalis 1988), thus enabling full SSI analyses (kinematic + in-
ertial) to be performed on extended, embedded structures of general shape.  

Concurrently with the developments in the description of soil responses, sev-
eral studies have been made on the simple structural model described above in order 



to identify the parameters having the major influence on SSI, and to set up 
approximate procedures for accounting of its effects in the design. The most ex-
tensive efforts in these two directions have been made by Veletsos and his co-
workers (see for ex. Veletsos and Meek 1974, Veletsos 1977), who succeeded in 
providing a simple procedure by which the actual building is reduced to a so-called 
replacement oscillator, a single d.o.f. structure having period of vibration T’ and 
damping ξ‘  properly adjusted for SSI. This procedure was later incorporated in the 
ATC 3.06 Provisions (1983).  

Through the mentioned studies, two parameters were found to essentially 
regulate the importance of the phenomenon: 

• the wave parameter:  

 
H

TsV ⋅
=σ  (1) 

expressing the relative stiffness of the foundation medium and the structure. Vs  de-
notes the shear wave velocity in the soil, T the fixed-base period of the struc ture, H 
its height. 

• the ratio: H/r , where r  is the (equivalent) radius of the foundation. 
Intuitively, SSI effects are expected to be more significant with σ decreasing 

and H/r increasing, respectively. 
These two parameters can be combined into a third one: 
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which is best suited to measure the limit condition below which SSI effects are not 
worth consideration in the design. The indicated threshold value for φ  is: φ  ≤ 0.125 
(Veletsos 1977). 

It is appropriate to note that all the methods that have been briefly reviewed 
thus far are based on the assumption that the superstructure behaves elastically, a 
significant limitation for structures that are intended to resist severe earthquakes, for 
which inelastic action is intentionally accepted. Under strong shaking, one should of 
course also consider possible soil non linearity: at present, this can only be dealt with 
practically by using appropriate effective values for the modulus of elasticity and the 
(frequency- independent) damping factor. 

Investigations on the effect of SSI in presence of yielding of the superstruc-
ture (as compared with the elastic case) are scarce, if at all. In qualitative terms, 
yielding may be viewed globally as a decrease of stiffness of the structure, hence it 
could be inferred that it would tend to decrease SSI effects (see parameter φ ). No 
quantitative information, however, has been up to now derived on this aspect, and 
especially on the effects of SSI on the maximum required ductilities in the critical 
regions of the superstructure. 

Yet the question is not of negligible consequences, as it can be easily demon-
strated through the following case, taken from (Priestley and Park 1987). 
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Figure 3.19. Components of the total displacement for compliant foundation  

(after Priestley and Park 1987) 

For the isolated bridge pier shown in Figure 3.19, the maximum allowable 
horizontal displacement at the center of gravity (C.o.G.) of the upper deck is in 
general made up of four contributions: 

 py δ+δ+δ+δ=δ ϕτmax  (3) 

where  and  are the rigid-body contributions corresponding to the translation and the 
rotation of the foundation, y is the contribution due to the deformation of the pier 
when yielding is first reached at the base, and p is due to the maximum admissible 
rotation of the plastic hinge located in the lower portion of the pier: 
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Lp being the equivalent plastic hinge length. 
If the available ductility of the pier, expressed in terms of the displacement at 

the deck C.o.G., is defined as: 
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writing: cdd =+τ  , it follows that: 
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For the case under examination, Eq. (6) is often directly used as the force-re-
duction factor R (i.e., the behavior factor) in the design of the structure.  

A value frequently adopted for R is: R = 4. Therefore, lets put 4 at the left-
hand side of Eq. (6), and examine the two cases in which c = 0 and c = 1, respec-
tively. One gets: for c = 0, yp δ=δ 3 ; for c = 1, yp δ=δ 6 ; that is, even a relatively 



modest deformability of the base requires a large increase in the required plastic 
deformation of the hinge, if the displacement ductility has to remain unchanged. 

This fact leads back to the initial question: how does the incorporation of SSI 
affects the response in terms of maximum required ductility? 

The investigation reported in this study attempts to answer this question with 
reference to a simple structural configuration: a vertical cantilever carrying a mass at 
the top, whose mechanical model is, apart from the inelasticity of the superstructure, 
identical with the “historical” one described earlier.  

Since the present study is concerned with bridge piers of common geometry 
having spread or strip footing foundations, the assumption of a uniform motion 
underneath is sufficiently realistic, and therefore the kinematic effect will not 
considered. Moreover, since the context of this study is the calibration of the values 
of the R factors to be used in the design of bridges, it has been considered more 
appropriate to use data corresponding to realistic geometries (as concerns 
foundations, cross-sections, heights, etc.), weights of the deck, steel ratios, range of 
soil data, etc., rather than to conduct parametric analyses using the non-dimensional 
quantities mentioned previously. Once the results obtained, however, their 
presentation has also been arranged in terms of the parameters , and T’/T, and H/r, to 
facilitate their appreciation in terms of classical quantities. 

 

3.2.1 Mechanical model and equation of motion 

3.2.1.1 Superstructure 

The piers are modeled as single d.o.f. oscillators characterized by mass, 
damping and restoring force. The mass M equals the weight of the supported deck 
plus a fraction of the distributed self weight of the pier (≅ 25 % of the total weight): 
the fraction adopted is such as to lead to the same natural period for the actual 
distributed mass cantilever and a massless cantilever with a single mass on top. The 
damping is assumed to be of the viscous type, and characterized by a given value of 
the damping ratio with respect to the critical. The pier stem is assumed to respond 
elastically all through its height, except for the plastic hinge zone at the base, 
extending for a length Lp (Figure 3.20a). The plastic hinge has a moment-curvature 
relationship of the Takeda type (Figure 3.20b), i.e., elasto-plastic with strain-
hardening and stiffness degradation with increasing cyclic deformation amplitude. 
The yielding moment of the Takeda model corresponds to yielding of the furthermost 
layer of reinforcing bars, considering the normal force actually present at the pier 
base. To account for cracking of concrete, the elastic portion of the pier has been 
attributed a stiffness EI  equal to that of the gross, unreinforced cross section divided 
by the factor 2.50. 
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Figure 3.20. a) Mechanical model of the pier with soil springs;  

b) Moment-curvature relationship of the plastic-hinge zone 

3.2.1.2 Foundation and foundation soil 

Having considered piers of rectangular cross sections, the foundation mats 
have also been taken as rectangular in plan. They are considered in the analysis as 
rigid and perfectly bonded to the soil; moreover, the effect of their mass and of their 
moment of inertia about the horizontal axis has been disregarded. 

For evaluating the dynamic impedances, use has been made of the solutions 
for rigid circular footings on an elastic half-space obtained by (Veletsos and Wei 
1971), as reported in (Gazetas 1983). To enter these solutions, equivalent radii have 
been evaluated using the relationships: 
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for the lateral and rocking stiffnesses, respectively (2B and 2L denote the lengths of 
the two sides of the block, the former being the side orthogonal to the axis of 
rocking). 

The dynamic impedances of the soil, relative to the i-th degree of freedom, 
are usually cast in the form: 

 ( )iiisti caikKK 0, +=  (8) 
i.e., they are expressed as the product of a static term Kst,i , which is actually equal to 
the static stiffness of the soil system, times a dynamic term, this latter being a com-
plex, frequency-dependent quantity. In particular, the stiffness coefficient ki reflects 
the dynamic part of the stiffness, as well as the inertia of the soil, while the 
dimensionless damping coefficient ci in the imaginary component accounts for the 
frequency-dependent loss of energy due to the radiation of the waves away from the  
foundation; a0 is a dimensionless frequency factor that is a function of the vibrational 
frequency  and is given by the expression: 
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From a computational point of view, it is convenient to treat the dissipative 
component as it was viscous in nature, and characterized by an (approximately) 
constant viscous factor Ci. The value of Ci is easily obtained from the equality: 

 iisti caKiCi 0,=ω  (10) 
which gives: 
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where for ci one may take its average value over the range of frequencies of interest. 
The parameters needed to quantify the dynamic impedances are illustrated in 

Figure 3.21 for the horizontal (index τ ) and rocking (index ϕ ) components, 
respectively (Gazetas 1983). It can be observed that ci (and hence Ci) is nearly con-
stant over the whole range of frequencies for the translational motion, while for rock-
ing it tends to stabilize for values of a0 in excess of 2-3. The values of interest for a0 
in the present application, however, are much lower than unity (the values vary in the 
range 0.08 < a0 < 0.56), so that damping due to rocking can be anticipated to be of 
negligible importance. 
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Figure 3.21. Impedance functions of rigid circular footings on homogenous half space (Gazetas 1983) 

(
 _____  ν  = 0.5; _ . _ . _  ν  = 0.33): a) horizontal stiffness coefficient kτ; b) horizontal damping 

coefficient cτ; c) rocking stiffness coefficient kϕ; d) rocking damping coefficient cϕ 



In addition to the damping due to radiation, the always present dissipation of 
energy due to internal damping of the soil is usually introduced in the form of fre-
quency- independent hysteretic damping. The equivalence between this latter and that 
of viscous type is then found by equating the normalized amounts of energy 
dissipated in one cycle of amplitude A at the frequency ω in the two forms: 
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where ( )mKC ⋅=β 2/  is the ratio of the damping to its critical value, and mK /=Ω  
is the eigenfrequency of the 1 d.o.f. mass-spring-dashpot system (that is 
characterized by an effective damping C and an effective stiffness K) equivalent to 
the massless footing-soil system. 

For lightly damped systems it is known that the damping affects the magni-
tude of response in the frequency region close to resonance, allowing to put: 1/ ≅Ωω  
in Eq. (12) and getting: 

 ξ=β  (14) 
that is: the hysteretic energy loss ratio can be treated in the same way as the critical 
viscous ratio, and therefore simply added to the equivalent viscous damping related 
to radiation. 

3.2.1.3 Effective damping of the soil-structure system 

As shown in the following, the 3 d.o.f.s system illustrated in Figure 3.20a can 
be reduced to a 1 d.o.f. system in which the only variable is the displacement of the 
mass on top.  

In parallel, one also needs to evaluate a single effective damping force acting 
on the mass, encompassing the combined effect of the reinforced concrete portion 
and of the soil. This can be done by having recourse to a well known approximate 
criterion (described in Roesset et al. 1973), often denominated as of weighted 
damping. In the case at hand the criterion simply consists of assuming that: 

a) the system in Figure 3.20a oscillates according to a fixed shape, given by 
its undamped elastic first mode; 

b) the effective damping of the system is given by the weighted sum of the 
damping of its parts, the weight being the normalized elastic energy stored into each 
of them for a deformed shape corresponding to the first mode. 

This leads to the expression: 



 
( )

epesds

eppessds
eq EEE

EEE

++

β+βπ+

π
=β

4

4
1

 (15) 

where: 2
iids xCE ΣΩπ=  is the energy dissipated within the soil by radiation,  and xi 

being the first mode frequency and the modal coordinates of the soil d.o.f.’s respec-
tively, and Ci is the damping constant relative to the i-th degree-of-freedom 
characterizing the soil-structure interaction (i.e. horizontal translation or flexural 
rotation); Ees is the modal elastic energy stored in the soil springs; Eep is the modal 
elastic energy in the piers; sβ  and pβ  are the effective damping of the soil and of 
the pier. 

 

3.2.1.4 Seismic input 

All the analyses made in the present study have been performed using a 
seismic input characterized by a value of the peak ground acceleration equal to 0.35 
g and by a frequency content corresponding to the amplification spectrum given in 
the Euro-code No. 8 (1988) for soils of the intermediate type.  

Seven simulated time-histories have been generated from the target spectrum, 
having a total duration of 27 s, with a stationary portion of 20 s and two linearly 
modulating functions at both ends. Figure 3.22 shows one of the samples and Figure 
3.23 the comparison between the given and the average spectrum from the seven 
accelerograms. The response quantities from the non linear analyses presented in the 
following (peak displacements, ductilities, etc.) correspond to the averages out of the 
seven values obtained from each analysis. 
 

-4

-3

-2

-1

0

1

2

3

4

0 5 10 15 20 25

ag

(m/s  )2

t(s)

 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0.00 1.00 2.00 3.00 4.00

Average response spectrum

S2 response spectrum (EC8)

R(T)

T (s)  

Figure 3.22. One of the adopted sample-
accelerograms 

Figure 3.23. Comparison between target and 
average spectrum from seven accelerograms 

3.2.1.5 Equation of motion 

The mechanical model of the piers previously described and shown in Figure 
3.20a has 3 d.o.f.s: a translational and a rotational component at the base: u, ϕ , and 
the total displacement  of the mass at the top.  



Since, however, u and ϕ  are not associated with mass and moment of inertia, 
they can be eliminated through static condensation and a single equation can be 
written, related to the dynamic equilibrium of the upper mass. 

The only quantity that has yet to be derived is the instantaneous tangent stiff-
ness, relating the increment of displacement: ∆ to the incremental force F . This 
derivation follows. With the symbols indicated in Figure 3.20a and Figure 3.20b, 
given an increment F , the corresponding increment  can be expressed as: 

 pe δ∆+δ∆+δ∆+δ∆=δ∆ ϕτ  (16) 
where: 
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and: K and K are the stiffnesses of the translational and rotational springs modeling 
the pier connection to the soil; KT  is the tangent stiffness of the hysteretic hinge;  

( ) PHFM e ⋅δ−δ+⋅∆=∆ . 
Upon substitution and separation of the terms containing F  and ∆ one gets: 
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 ( )( )HKPCp ⋅−= τ/1  
The equation of motion is finally: 

 )()(2 taMKM eq ⋅=δδ+δβω+δ
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 (19) 

to be integrated numerically, iterating at each step until K( δ ) becomes consistent 
with the current value of  δ .  

3.2.2 Cases examined 

As mentioned in the introduction, the primary purpose of this study is to as-
sess the relevance (in absolute terms) of the SSI effects on dynamic response of 
bridge piers responding in the inelastic range. In case these effects were found to be 
important, either favorably or unfavorably, then a second purpose would have been 
that of identifying the range of parameters leading to the two situations, and finally 
of devising appropriate procedures for dealing with both. 

In order to achieve the primary purpose with results of sufficient generality, a 
quite large number of design parameters have been considered with their likely vari-
ations, the total number of cases analyzed being 240. 

 



The selected parameters are: 
• the piers cross sections, with two types, A and B, both hollow rectangular; 
• the height of the piers, with five values ranging from 10 m to 50 m; 
• the spans of the decks, which have been taken as 30 m (deck a) and 50 m (deck 

b). This variation has influence on the mass that is present at the top of the piers 
(inertial effects) as well as on the amount of normal force acting at the pier base. 
The unit weight of the deck is taken equal to 200 kN/m; 

• the dimensions of the foundation mats, which have been given two different 
values for each of the cross sections A and B; 

• the percentage of steel ρ  in the piers cross sections (the ratio between steel and 
gross concrete areas) which has been attributed two values, equal to 0.25% and 
1%, respectively. The background for the selection of these values, and in 
particular of the lowest one, is illustrated in the report of a previous study by the 
authors (Calvi et al. 1990). 

• the shear modulus of the soil, for which two values have been selected: G = 100 
MPa and 300 MPa, the first one representing a likely lower bound for a direct 
foundation. The case of fixed foundation, which has been obviously also consid-
ered, can be treated as a third limiting case of G = ∞ . 

 

Table 3.6. Summary of the variables considered in the parametric analysis 

Soil characteristics            G = 100 / 300 / ∞ MPa 

Pier sections 
type “A” (4 m x 2 m x 0.30 m) 

type “B” (6 m x 2.20 m x 0.40 m) 

Superstructure span length L  30 m (deck “a”) / 50 m (deck “b”) 

Equivalent radius of foundation r 
4 m / 6 m  for piers type “A” 

6 m / 9 m for piers type “B” 

H (m)  10 / 20 / 30 / 40 / 50 

ρ (%) 0.25 / 1.00 

 
With the parameters varying as indicated in the above, the periods of oscilla-

tion of the piers in the elastic, uncracked state were comprised in the range 0.22 to 
2.60 seconds,  thus covering a large percentage of actual cases. 

The values assigned to the parameters are summarized in Table 3.6, while 
Table 3.7 and Table 3.8 give the values of the soil stiffness and viscous constants for 
the various cases, derived trough the relationship: 

 ϕτϕτϕτ = ,,, K
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In Figure 3.24 the values of eqβ  are shown for the various cases as function 
of the parameter σ . It is seen from Figure 3.24 that the global damping goes rapidly 
down with increasing σ  close to the value of the structure alone, which has been set 
at 2%. Therefore radiation and hysteretic damping contributes significantly to the 
overall damping only for the extreme combination of stiff structures on weak soil. 
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Figure 3.24. Resulting βeq as a function of σ  

Table 3.7. Stiffnesses and damping of the soil model: pier type “A” 

G  
(MPa) 

ν  r  
(m) 

Kτ  
(GN/m) 

Kϕ 
(GNm/rad) 

Cτ 
(MN s/m) 

Cϕ 
(MNms/rad) 

100 0.33 4 1.92 16.00 20.90 46.30 

100 0.33 6 2.88 54.00 47.10 235.00 

300 0.33 4 5.76 48.00 36.02 79.80 

300 0.33 6 8.64 162.00 81.05 404.00 

 
Table 3.8. Stiffnesses and damping of the soil model: pier type “B” 

G  
(MPa) 

ν  r  
(m) 

Kτ  
(GN/m) 

Kϕ 
(GNm/rad) 

Cτ 
(MN s/m) 

Cϕ 
(MNms/rad) 

100 0.33 6 2.88 54.00 47.03 235.00 

100 0.33 9 4.32 182.25 105.82 1187.00 

300 0.33 6 8.64 162.00 81.05 404.00 

300 0.33 9 12.96 546.75 182.4 2045.00 

 



3.2.3 Results 

The response quantities will be presented and discussed as functions of three 
dimensionless variables:  

• 
H

TVs ⋅
=σ  

This quantity contains in the numerator the square root of the ratio G/K where 
K is the elastic stiffness of the pier: therefore SSI effects are expected to be more 
significant for low values of σ. For a given value of the product Vs ⋅T , the higher is 
the value of H the lower is σ, a fact that intuitively reinforces the idea that one 
should expect greater SSI effects for low values of σ.  

• 
T
T ′

 

The ratio between the fundamental periods of the elastically supported and 
the fixed base pier can expressed, in the elastic range, as: 
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and tends to unity for Kτ >> K and Kϕ  → ∞ . Even more evidently than σ, this ratio 
reflects the importance of the interaction in modifying a fundamental dynamic 
characteristic of the system. Generally, with the exception of very short piers, an 
increase of T’/T tends to reduce the response in terms of acceleration and to increase 
it (in all case) in terms of displacements. What it does produce in terms of ductility is 
the main object of the present investigation. 

• 
r
H

 

This parameter is clearly incomplete in describing both the characteristics of 
the pier (stiffness and mass properties are absent) and those of the soil, that are 
completely missing. It is, however, a geometric parameter of immediate engineering 
significance, which justifies the attempt of using it as a variable for showing the 
effects of SSI.  

The response quantities examined are the maxima of the top displacements, 
of the curvature ductility demand µφ  at the pier bases, and of the displacement 
ductility demand µδ at the pier tops. Each maximum value in the plots represents the 
average from seven independent spectrum-compatible accelerograms. The associated 
coefficients of variation, not indicated in the diagrams, are approximately uniform 
and with a magnitude comprised in the range 0.20 - 0.30. 

The parameter η in Figure 3.25 is the ratio of the maximum top displace-
ments with and without SSI effects (fixed base). For the sake of completeness, the 
fixed base values of the maximum top displacements are reported in Table 3.9. There 
is nothing unexpected to be noted in Figure 3.25: adding flexibility to the founda-
tions leads to increased maximum displacements. The results can be demonstrated in 



terms of σ, as in Figure 3.25a, where the increase of η is seen to be higher for lower 
values of σ (that is, for higher SSI effects), or in terms of T’/T, as in Figure 3.25b, 
where is the lengthening of the period to produce higher values of η.  

Considering the width of the examined range, however, the effect does not 
appear as really significant: in more then in 90% of the cases η is less than 1.25, and 
it is below 1.50 for almost all cases. In a not negligible percentage of cases, a 
(generally) slight reduction (η < 1) also shows up.  
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Figure 3.25. Ratio of the maximum top displacements with and without SSI effects:  

a) as a function of σ ; b) as a function of T’/T; c) as a function of H/r 



Table 3.9. Maximum top displacements (in m) for the fixed-base case 

H Pier A 

deck a 
ρ = 0.25 

Pier A 

deck a 
ρ = 1.00 

Pier A 

deck b 
ρ = 0.25 

Pier A 

deck b 
ρ = 1.00 

Pier B 

deck a 
ρ = 0.25 

Pier B 

deck a 
ρ = 1.00 

Pier B 

deck b 
ρ = 0.25 

Pier B 

deck b 
ρ = 1.00 

10 0.028 0.033 0.046 0.033 0.011 0.010 0.018 0.014 

20 0.129 0.113 0.150 0.158 0.061 0.061 0.081 0.075 

30 0.270 0.257 0.293 0.306 0.109 0.125 0.149 0.150 

40 0.443 0.412 0.501 0.525 0.202 0.211 0.257 0.277 

50 0.556 0.586 0.703 0.642 0.292 0.340 0.368 0.414 

 
This result is due to a combina tion of two factors: the higher damping 

contributed by the soil (especially for squat piers), and the amount of inelastic 
response. While in fact η < 1 could not occur for equal damping and in the elastic 
range, the behavior of a yielding and degrading oscillator does not rule out a 
reduction. As a final comment on the displacement, the nearly horizontal trend of the 
regression lines in the Figure 3.25 demonstrates that η is only weakly sensitive to all 
of three variables. 

The remarks made thus far have only an introductory character with respect 
to the actual issue of the study, which relates to the influence of SSI on the inelastic 
response. This influence appears directly in Figure 3.26, where the ordinate χ rep-
resent the ratio between peak curvature ductility demands µφ (averages from seven 
accelerograms), with and without SSI effects, as functions of the three variables: σ, 
T’/T,  H/r. The ordinates scale has been magnified on purpose for an immediate 
appreciation of the results, which can be simply summarized as follows: the majority 
of the points lie on or below the line χ = 1; the total scatter does not exceed ± 25%; 
the regression lines really should be taken as horizontal for all practical purposes. 

 

Table 3.10. Peak curvature ductility demand (fixed-base case) 

H Pier A 

deck a 
ρ = 0.25 

Pier A 

deck a 
ρ = 1.00 

Pier A 

deck. b 
ρ = 0.25 

Pier A 

deck b 
ρ = 1.00 

Pier B 

deck a 
ρ = 0.25 

Pier B 

deck a 
ρ = 1.00 

Pier B 

deck b 
ρ = 0.25 

Pier B 

deck b 
ρ = 1.00 

10 6.48 3.33 6.84 4.74 3.13 2.20 4.30 3.13 

20 4.00 2.61 4.71 3.38 2.91 1.92 3.72 2.52 

30 3.56 2.44 3.77 2.65 2.13 1.57 2.74 1.92 

40 3.09 2.02 3.43 2.45 2.00 1.35 2.53 1.76 

50 2.18 1.67 1.99 2.00 1.74 1.32 2.15 1.62 



Looking at the results in more detail, one could observe a systematic reduc-
tion of χ for the lower value of the reinforcement ratio (ρ = 0.25%). In other words, 
the curvature ductility demand µφ  decreases when SSI combines with low yielding 
structures. The range of values of the µφ ’s for all the fixed-base cases, and in 
particular for ρ = 0.25%, can be seen in Table 3.10.  
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Figure 3.26. Ratio of the maximum curvature ductility demands with and without SSI effects:  

a) as a function of σ ; b) as a function of T’/T; c) as a function of H/r 



The result depicted in Figure 3.26, i.e., the fact that µφ  is substantially in-
sensitive to SSI, was not obvious beforehand and has a direct bearing on the argu-
ment raised in the introduction. In fact, if µφ  remains approximately constant inde-
pendently on SSI, and the factor c in Eq. (6) is anything greater than zero, then the 
displacement ductility demand µδ  as defined in Eq. (6) can only decrease.  

This fact is confirmed by Figure 3.27, where the ratio of the δµ  with ( SSI,δµ ) 

and without ( fix,δµ ) SSI is plotted as function of σ. The observed reduction is 
systematic and the average is about 0.85. In the cases examined the factor c was 
comprised in the range 0.1 - 1.85. 
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Figure 3.27. Ratio of max displacement ductility demands w/ and w/out SSI as function of σ  
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Figure 3.28. Ratio of plastic components of top displacements w/ and w/out SSI as function of σ  

One may therefore conclude that the increase of the peak top displacement 
generally produced by the SSI is due to the rigid body motion components 
originating from the soil deformation at the foundation level, and not to greater 
inelastic demands at the base section. The inelastic demand does not show systematic 
dependencies from the parameters that regulate the SSI phenomenon, but is 
statistically lower (though to a small degree) in the case of a flexible foundation.  



To further force this point, in Figure 3.28 the ratio ψ of the plastic 
components of the top displacements, with and without SSI effects, is plotted as 
function of σ. Practically all points lie below the line indicating unity, with an 
average of 0.90 and a c.o.v. of 0.18. 

As a final remark, one might argue that the definition of the displacement 
ductility for the case of a compliant soil as given in Eq. (6) may not be totally ap-
propriate, since it introduces displacement components not related to the state of 
strain of the structural part. If these components were eliminated from the definition, 
i.e., if the results were plotted using the standard definition of displacement ductility 
(which accounts to putting c = 0 in Eq. (6)), the plot in Figure 3.29 is obtained. The 
ordinates have the same meaning as in Figure 3.27, that is the ratio µ* of µδ  for the 
SSI and the rigid-base cases (whose values are reported in Table 3.11). The points 
have a relatively low dispersion and the average value is 0.98.  

The essence of what has been discussed thus far is that soil compliance does 
not appear to have a significant bearing on inelastic demand, at least for the simple 
structural types that have been considered. 
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Figure 3.29. Ratio of max displacement ductility demands w/ and w/out SSI,  

evaluated neglecting the rigid-body components of the pier top displacement, as function of σ  

Table 3.11. Peak displacement ductility demand (fixed-base case) 

H Pier A 

deck a 
ρ = 0.25 

Pier A 

deck a 
ρ = 1.00 

Pier A 

deck. b 
ρ = 0.25 

Pier A 

deck b 
ρ = 1.00 

Pier B 

deck a 
ρ = 0.25 

Pier B 

deck a 
ρ = 1.00 

Pier B 

deck b 
ρ = 0.25 

Pier B 

deck b 
ρ = 1.00 

10 5.68 2.24 4.88 2.59 2.39 1.72 3.45 1.91 

20 3.64 1.87 3.40 2.06 2.21 1.64 3.40 1.80 

30 3.19 1.84 2.81 1.75 2.18 1.43 2.60 1.58 

40 2.77 1.60 2.56 1.64 2.15 1.30 2.36 1.54 

50 2.09 1.41 1.75 1.45 1.91 1.29 2.04 1.43 



Since this fact is not commonly recognized, controversial opinions actually 
exist among specialists: it is then of importance to know whether the validity of the 
obtained results is restricted to the ranges of variation attributed to the parameters or, 
on the contrary, the results are expression of a trend having a character of stability. 

To this end, additional “bounding” cases have been analyzed, in which the 
stiffness of the soil is decreased down to G = 30 MPa, and the intensity of the input 
is doubled to 0.7 g. In this way, the effects of soil compliance are magnified, and the 
structural response is moved deeper in the inelastic range. 

The limit to 30 MPa (Vs = 120 m/s) has been set in consideration that it corre-
sponds to about half of the value of Vs which in some recent seismic codes marks the 
separation between intermediate and soft soil conditions. Below this value, it is likely 
that site-specific soil amplification studies would be required, ruling out the recourse 
to standard response spectrum shapes. For these latter cases, which are outside the 
scope of the present work, indications of general validity do not seem possible. 
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Figure 3.30. Ratio of max displacement ductility demands w/ and w/out SSI,  

evaluated as in Figure 3.29, as function of σ : also the case G = 30 MPa is considered 
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Figure 3.31. Ratio of max displacement ductility demands w/ and w/out SSI,  

evaluated as in Figure 3.29, as function of σ : all cases are considered (G = 30 - 100 - 300 MPa), 
with peak ground acceleration set equal to 0.7 g 



The results from the additional analyses are summarized in the two Figure 
3.30 and Figure 3.31, which should be compared directly with Figure 3.29. In 
particular, Figure 3.30 includes all the old as well as the new cases (G = 30 MPa) 
with the peak ground acceleration (PGA) fixed at 0.35 g, while Figure 3.31 repeats 
the total number of cases for a PGA = 0.7 g. In both figures the results for G = 30 
MPa are represented by the points corresponding to smaller values of σ , and they 
indicate a significant systematic decrease of the inelastic effects with the increased 
compliance of the soil. 

The average values of all the ordinates (Figure 3.30) is 0.91 instead of 0.98, 
but for the new cases only it would be of the order of 0.8. Finally, comparison 
between the Figs. 12 and 13 indicates that the ratio of the ductility demands with and 
without consideration of SSI is virtually independent of the intensity of the shaking, 
that is to say, of the amount of ductility actually exploited. 

 

3.2.4 Conclusions 

A large parametric study has been undertaken with the purpose of determin-
ing the effects of SSI on the inelastic response of realistic cases of pier heights and 
shapes. Wide-band frequency content and adequate intensity of the seismic motion 
have led the response of the piers well in the inelastic range, with maximum 
curvature ductility demand in the order of 7.  

The results indicate that while in most cases SSI produces an increase of the 
maximum displacements, this effect is not very significant and, furthermore, is only 
due to the rigid body components arising from the soil deformation at the base. 

The inelastic demand in terms of curvature remains essentially unaffected by 
SSI, showing however a tendency to decrease. If the rigid body components are sub-
tracted from the total displacements, then the displacement ductility demands on the 
piers are consistently also decreased by the SSI effects. 

These conclusions have been proven to remain valid also in cases where soil 
compliance takes on values which are the lowest still compatible with the use of 
standard shapes of the response spectra, as well as for peak ground acceleration (0.7 
g) close to the upper bound presently considered in areas of very high seismicity. 
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3.3 Vertical oscillations  

In view of the field evidence (Ono et al. 1996) of the damaging effects due to 
axial vibrations in vertical members of RC structures during past earthquakes, 
various authors have investigated this problem in the past few years. In particular, the 
effects of vertical ground motion components on buildings and bridges (Papazoglou 
and Elnashai 1996, Elnashai and Papazoglou 1997) have been studied. The ground 
motion vertical component tends, in general, to be ignored or underestimated in 
current seismic analysis of structures. On the contrary, some studies have shown that 
it has a considerable relevance, particularly in the field of soil-structure interaction 
(Mohammadioun 1997). A remarkable field evidence of this fact was found in the 
near past, during the Hyogo-ken Nanbu earthquake of 1995, where (JSCE 1995) 
ground vertical acceleration components experienced little attenuation from bedrock 
to ground surface (as opposed to horizontal ones), even in potentially liquefiable 
soils. As a consequence, high vertical seismic inputs on structures were observed and 
unusual failures of vertical members occurred. 

While a number of studies has been presented on the effects of  vertical 
ground motion on structures in general (Papalentiou and Roesset 1993), little or no 
attention has been dedicated to vertical accelerations induced in RC members by 
flexural cracking. Independently of the vertical ground motion input, this source of 
vertical impulses can cause particularly severe effects in some types of structures. 
For a realistic estimate of the global response of RC structures, the two components 
outlined above should be added together. 

Most seismic codes do not give, in fact, specific recommendations on this 
issue. Nonetheless, structural members may experience sudden failures associated 
with instantaneous decay of shear or flexural strength due to high axial force 
fluctuations. As reported in (Elnashai et al. 1995), axial force fluctuations due to 
combined effects of vertical ground motion and bending- induced vertical 
accelerations may easily exceed ± 60% of the static axial load. In these 
circumstances, the piers become obviously very vulnerable. Moreover, maximum 
bending- induced vertical accelerations should occur approximately at maximum 
horizontal response, therefore determining a case of extreme severity. The issue is 
particularly relevant when considering the performance of joints and bearings.  

Scope of the present work is to quantify the component of vertical oscillations 
due to concrete cracking and rocking mechanism in bridge piers, with particular 
reference to systems in which the deck is made of multiple girders supported by large 
cap beams. In this kind of structures, very frequent in European and Japanese 
highway networks, bending- induced axial vibrations may have a significant effect on 
the general structural performance, including that of bearings. The frequency content 
and magnitude of the vertical motion associated with this effect is analyzed for 
different structures, with different natural periods. Typical existing viaducts, as well 
as similar structures, designed using Eurocode8 seismic code provisions (Eurocode 8 
1994) are analyzed. A simplified model, based on the cracked section kinematics, is 
developed to predict the magnitude of bending- induced axial accelerations. 



3.3.1 The analyzed structures: geometry and dimensioning 

Three different structures, meant to be representative of typical prestressed 
concrete viaducts in seismic regions, have been analyzed. The three structures have 
the same 30 m span superstructure and different pier heights: 6, 12 and 18 m 
respectively. Each analyzed structure is supposed to be part of a viaduct made of a 
sequence of equal spans, simply supported on piers of similar heights. The analysis  
of the seismic response of these structures in the transverse direction is then carried 
out on a 2D schematization, taking into consideration one pier only with two half 
spans each side. 

The superstructure, with a total platform width of 15.7 m, is made of a 0.25 m 
reinforced concrete slab connecting four prestressed concrete girders as shown in 
Figure 3.32. This deck configuration requires a 11.5 m wide cap beam, in order to 
seat four bearings with a center to center distance of 3.5 m. The weight of one span 
has been assumed equal to 6000 kN, therefore a vertical load of 1500 kN acts on 
each bearing support. An additional weight of 600 kN  has been considered to 
account for the cap beam.  
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Figure 3.32. Pier type considered with superstructure. 

Dimensioning of the pier cross section has been carried out so as to obtain a 
normalized axial load ( ) 1.0=′ gc AfP  under self weight alone, as typical for this 

kind of structures ( cf ′  is the unconfined concrete compression strength and gA  is the 
area of the gross section). The flexural capacity of the pier cross section, reflecting 
the actual situation of most existing viaducts, has been dimensioned according to 
allowable stress criteria. For each structure, the design moment is computed based on 
a constant response spectrum of 0.1g. The required flexural capacities are therefore 



proportional to the pier height since the total mass is roughly the same for the three 
cases; the base bending moments are computed on a cantilever scheme, neglecting 
the influence of deck torsional ine rtia and cap beam flexibility. 

The same hollow cross-section has been adopted in the three cases with 
different amount of longitudinal reinforcing steel lρ . Table 3.12 summarizes the 
main design characteristics. 

 

Table 3.12. Pier geometry and mechanical properties 

Pier Height 

[m] 

Section  dimensions         

[m] 

Wall Thick. 

[m] 

ρ l  

[%]   

My         

[kNm] 

Mn            

[kNm] 

6 2.5 x 1.5 0.3 0.35 9667 10166 

12 2.5 x 1.5 0.3 0.70 12204 13939 

18 2.5 x 1.5 0.3 1.00 14090 16929 

 
Note that the longitudinal reinforcement ratios have been expressed as a 

function of the concrete section net area (excluding the hollow portion). The first 
yield moment My (bending moment at first yield of longitud inal rebars) and the 
nominal moment Mn (defined here as the bending moment at 5 times yield curvature) 
are indicated to conventionally define the mechanical properties. 

The choice of this kind of structures, with extremely low longitudinal 
reinforcement,  reflects the intention of approaching the problem from the 
assessment of existing bridge piers. The use of current design codes based on 
ultimate limit state analysis and period-dependent response spectra would lead in fact 
to different flexural capacities. For comparison, the design moments obtained using 
the EC8 Design Code (Eurocode 8 1994) for a peak ground acceleration of 0.35g, are 
reported in Table 3.13. 

 
Table 3.13. EC8 Dimensioning 

Pier height [m] Md [kNm] - EC8 Behavior Factor q 

6 13300 2.5 

12 10941 3.5 

18 10002 3.5 
 
Following the EC8 design procedure, design moments Md have been 

computed using modal analysis of the structure including cap beam flexibility and 
lumped masses with horizontal as well as vertical components. A reduced ductility 
level (behavior factor q) has been used for the 6m pier as suggested by the EC8 in 
case of squat members. 



Shear dimensioning of the three structures is omitted since the investigations 
are focused on axial- flexural coupling, however it is assumed that adequate shear 
reinforcement is provided to ensure a flexural dominant response when large 
inelastic displacements occur.  

Before analyzing the nonlinear behavior of these structures under a selected 
earthquake, it is interesting to see the results of the modal analysis to gain an insight 
on their dynamic properties. When these structures are modeled with realistic 
flexibility for the cap beam and both vertical and rotational masses are included to 
account for the vertical loads of the superstructure acting on the bearing supports, 
higher modes significantly influence the global behavior. Especially in the case of 
the short pier, a significant percentage of horizontal modal mass is found in the 
second mode, which is of the double bending type. In the following, the important 
consequences of these aspects on the phenomenon of bending- induced axial 
vibrations will be discussed. 

Two different configurations have been analyzed for the structural systems 
under consideration: the first assumes an infinitely rigid superstructure (rigid deck 
model), the second assumes a realistic flexibility for the superstructure (flexible deck 
model). The corresponding mass and stiffness distributions are represented in Figure 
3.33 and Figure 3.34, respectively. The main difference between the two models is 
that vertical masses are rigidly connected to the pier cap beam in one case, and via 
elastic supports (simulating the deck flexibility in the vertical plane) in the other 
case. 
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Figure 3.33. Rigid deck model. Figure 3.34. Flexible deck model. 

 
Natural frequencies and participating masses in x and y direction are 

indicated in Table 3.14 for the two models. The mode shapes of the 6 m pier 
structure are depicted in Figure 3.35 in the case of rigid deck assumption and in 
Figure 3.36 in the case of flexible deck assumption.  

 



Table 3.14. Results of modal analyses 

Pier height 

[m] 

Mode 

number 

Participating Mass 

% - X dir. 

Participating Mass 

% - Y dir. 

T 

[sec.] 

  Rigid Deck   

1 51.0 - 0.583 

2 48.0 - 0.123 

 

6 

3 - 76.0 0.070 

1 79.9 - 1.190 

2 20.1 - 0.232 

 

12 

3 - 90 0.090 

1 89.9 - 1.960 

2 10.1 - 0.303 

 

18 

3 - 95 0.104 

  Flexible Deck    

1 36.0 - 0.637 

2 - 87.0 0.322 

 

6 

3 59.0 - 0.243 

1 76.2 - 1.220 

2 23.1 - 0.363 

 

12 

3 - 84.0 0.326 

1 88.7 - 1.970 
2 11.1 - 0.427 

 

18 
3 - 82.0 0.330 

 
 
As anticipated before, it can be noted that the horizontal mass has a relatively 

low contribution to the first mode in the 6 m pier (especially in the flexible deck 
assumption). Rotation of the pier top is very limited in this case, thus enforcing a 
reverse bending behavior. Concrete cracking will therefore take place in the top and 
bottom sections, possibly increasing the hammering effect at bending reversal. In the 
12 m and 18 m piers instead, the deck rotational inertia is not significant when 
compared to the pier flexibility. The pier deforms mainly in simple bending with 
concrete cracking located at pier base only. 

In all linear elastic modal analyses, cracked stiffnesses have been assumed for 
the pier section using the expression proposed in (Kowalsky et al. 1995). 

Particular attention has been given to the modeling and to the distribution of 
lumped masses, since axial vibrations on the pier might excite vertical vibration 
modes. For this reason it has been decided to also investigate the influence of deck 
flexibility. 
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Figure 3.35. Rigid Deck Model – Modal Shapes. 
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Figure 3.36. Flexible Deck Model – Modal Shapes 

 

3.3.2 The numerical models for non-linear time-history analyses 

The three structures have been modeled using a flexibility-based fiber beam 
element developed by the authors (Petrangeli 1996, Petrangeli and Pinto 1998). The 
peculiarity of this element being that equilibrium, compatibility and constitutive 
equations are satisfied along the element, at each load increment, using an 
equilibrium based iterative solution (Petrangeli and Ciampi 1997). This feature is 
particularly relevant to the problem under consideration since, using the traditional 
stiffness approach, the axial force impulse associated to the non- linear flexural 
behavior would result in an internal element unbalance which would not be correctly 
integrated along the element length. 

Each pier has been modeled using two fiber beam elements with three, four 
and five integration Gauss points (monitoring sections) for the 6, 12 and 18 m piers 
respectively. The number of integration points has been selected in order to attain the 
same numerical precision in integrating the longitudinal strain field in the three 
structures, while maintaining the same tributary length to each integration point. The 
integration of the element strain field would require in fact a larger number of 
integration points for the shorter piers which have a predominant double bending 
type of deformation compared to the single bending type of the taller ones. The 
opposite would be required to keep a constant tributary length for each monitoring 



section. In fact, in the short pier shear cracking will take place over at least 2/3 of 
column height, indicating the presence of a larger plastic hinge region. On the other 
side,  the extremely low longitudinal reinforcement ratio will localize plastic hinging 
at the base. As a consequence, it is believed that, in this specific case, the suggested 
integration scheme applies successfully to all three piers. 

The pier cap has been modeled using linear elastic elements with equivalent 
mechanical properties. Rigid offsets have been introduced to account for the pier 
cross section width and the pier cap height. 

Constitutive models for concrete and reinforcing steel use state-of-the-art 
uniaxial stress-strain relationships based on the work of Mander et al. (1988) and 
Menegotto and Pinto (1977), respectively. In the concrete model, a crack-bridging 
branch has been introduced, providing a smooth transition between the tensile and 
the compression branches. This feature was required in order to avoid an 
overestimation of the impulsive component of vertical acceleration at crack closure 
which the original concrete model could have caused as a result of the abrupt 
transition between the zero stiffness, zero stress cracked state and the reloading 
branches to compression. 

Mechanical properties of the steel have been assumed as follows: yield 
strength = 400 MPa, ultimate strength = 570 MPa, Young’s modulus = 200000 MPa, 
ultimate strain = 0.10. Mechanical properties of the concrete are: unconfined strength 
= 35 MPa, confined strength = 42 MPa, strain at ultimate stress = 0.0035, Young’s 
modulus = 30000 MPa, tensile strength = 2.5 MPa, fracture energy = 0.1 kN/m. 

The deck horizontal mass (600 t) has been placed in one node only (at pier 
top, as indicated in Figure 3.33 and Figure 3.34) to avoid axial (horizontal) vibrations 
in the pier cap beam; vertical masses have been placed instead at each beam support 
(150 t each) and at pier top (60 t). In the rigid deck model,  the mass of the 
superstructure is rigidly connected to the cap beam (Figure 3.33). In the flexible deck 
model instead, deck vertical masses are connected to the cap beam via elastic 
supports (Figure 3.34). The stiffness of these elastic supports has been assumed such 
that the vertical oscillation of the rigid horizontal beam representing the 
superstructure (upper beam in Figure 3.34), has the same period of the first vertical 
mode of a typical prestressed concrete deck of 30 m span; this period is estimated at 
0.3 sec. 

The first mode natural frequencies computed with modal analysis have been 
used to quantify the viscous component of the structural damping. A viscous 
damping, in addition to the hysteretic one, has been considered in fact by means of a 
mass proportional damping factor C, where, for elastic systems, C = 2ξωm with m 
the mass, ξ the percentage of critical damping and ω the circular frequency. A value 
of 3% of critical damping has been assumed in our case to be representative of all 
viscous damping components acting within the elastic structural response. This value 
does adds up to the significant energy dissipation provided by the hysteretic behavior 
of concrete in tension (fracture and bond energy). It mainly accounts for the damping 
effects caused by deformation in the bearings, in the cap beam and in the deck. 



3.3.3 Results of non-linear analyses 

A set of non-linear time-history analyses using the general purpose F.E. code 
FIBER (Petrangeli 1996) has been performed using an accelerogram compatible with 
the EC8 response spectrum with PGA=0.35g as horizontal ground motion input. The 
vertical component has been purposely ignored in a first stage, while it has been 
included in a second set of analyses to evaluate the coupling effect on the pier axial 
response. A generated accelerogram, rather than a natural one, has been considered 
for the reason of simplicity. Several different ground motion inputs should be 
considered in fact for a more complete analysis. 
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Figure 3.37. Moment curvature cycles. 



Under the imposed horizontal ground motion, large inelastic deformations 
occur in the three structures. In all cases a plastic hinge forms at pier base, where 
longitudinal reinforcing bars reach (for the 6 m pier) a maximum strain of 
approximately 2.0%. Maximum base shears are 2500 kN, 1250 kN and 980 kN for 
the 6 m, 12 m and 18 m pier respectively. 

Moment curvature cycles at pier base are plo tted in Figure 3.37 for the rigid 
deck models. In the same graphs the corresponding axial force time history is also 
reported. The largest ductilities are found for the 6 m pier with a curvature ductility 
µφ = 8÷9. For this pier, the inflection point is located at 0.54H (with H full height of 
the pier), while for the 12 m and 18 m is 0.66H and 0.69H respectively. Note that the 
maximum axial force fluctuations are found for the 6 m pier (+58% in compression 
and –35% in tension). None of the piers experienced steel yielding in the top section 
below the pier cap beam. 

In the 6 m pier a global displacement ductility of about 5.0 is reached, 
compared to 2.5 and 2.0 in the 12 m and 18 m pier respectively. This remarkable 
difference in global damage is due to the inappropriate strength provided by the 
allowable stress design criterion and to the flat design spectrum adopted (0.1g). 
However, this result reflects the actual situation on existing viaducts where squat 
piers tend to have very light longitudinal reinforcement ratios.  

Maximum displacements drifts are in a range of 0.75% to 1% of pier height. 
Maximum vertical displacements at external bearing locations are insensitive to the 
pier height and are always around 0.05 m. 

The maximum response of the three structures is summarized in Figure 3.38 
and Figure 3.39 for the rigid deck and flexible deck model respectively. Maximum 
accelerations at bearing locations are indicated for each structure as a function of 
their fundamental elastic flexural period. It can be seen that in the proposed 
examples, the deck horizontal maximum acceleration does not vary significantly with 
pier height while the vertical acceleration does, due to varying axial/flexural period 
ratio as well as cap beam width/pier height ratio.  

As anticipated before, vertical acceleration response is particularly high for 
the squat pier, where a peak value of 0.9g is found at external bearing location. 
Generally, bending- induced vertical accelerations decrease with increasing pier 
height as also confirmed by other analyses. Vertical acceleration of the outer 
bearings includes in fact both an amplification of the pier vertical acceleration due to 
the pier cap beam flexibility and a “geometric” component due to the rotational 
acceleration of the pier cap beam itself. This component obviously decreases with 
decreasing cap beam width/pier height ratio.  The distribution of the vertical 
acceleration along the cap beam from pier top to external bearing location can be 
easily be derived from the graphs of Figure 3.38. In Figure 3.38 and Figure 3.39 the 
elastic response spectrum (with 5% damping) corresponding to the generated 
accelerogram used in the analyses as ground motion input, is also reported.  

Minor differences between the rigid and flexible deck models in terms of 
maximum accelerations are detected, although for the 18 m pier, the vertical 
acceleration on the outer bearing is higher due to dynamic amplification.  
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Figure 3.38. Maximum response for rigid deck model. 
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Figure 3.39. Maximum response for flexible deck model. 

Maximum vertical response at pier top for the flexible deck model (Figure 
3.38) has been omitted since no significant mass is lumped in that location. Results 
seem to indicate that, in this kind of structures, the deck flexibility does not influence 
the structural response in the vertical plane. However, it has to be noted that other 
ground motions might induce a different response, leading to different conclusions. 

Maximum displacement envelopes are shown in Figure 3.39 for rigid and 
flexible deck models. It should be noted that both the maximum horizontal and 
vertical displacements mainly depend on pier flexural response, which is driven by 
the horizontal mass inertia and does not significantly vary with deck flexibility. The 
same result is found for the three structures, indicating that deck flexibility has little 
influence on displacements in a wide range of pier flexural periods. 
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Figure 3.40. Acceleration response spectra (5% damping) of the horizontal and vertical deck motion 

at each bearing location and at pier top. 



In the following, the analysis of the frequency content of vertical motion will 
be carried out for the rigid deck model only, since minor differences are found for 
the flexible deck case. The plots of Figure 3.40 show the acceleration response 
spectra (with 5% damping) of the horizontal and vertical deck motion recorded at 
each bearing location and at pier top. The ground motion spectrum is plotted for 
comparison. These spectra provide an idea of the frequency content and magnitude 
of the structural response. Their values for T=0 correspond to the maximum 
accelerations plotted in Figure 3.38 and Figure 3.39 which are the ones to be used to 
evaluate the maximum vertical and horizontal force transmitted between deck and 
piers. In Figure 3.40, the peak below 0.2 sec. At the outer bearing location is clearly 
due to the selective amplification of the first vertical vibration mode of the pier (see 
mode 3 in Figure 3.35). It can be seen that the response spectra of vertical 
accelerations tend to be more concentrated in a narrow band of frequencies as the 
pier flexural period increases, while those of horizontal accelerations tend instead to 
have a constant level of response (i.e., frequency independent) around 0.75g. 

It can be noted from the results discussed above that on external bearings 
vertical acceleration response is equal or greater (up to a factor of 2 for the 6 m pier) 
than the horizontal one. With the ratio between vertical and horizontal force on 
bearings (Rv/H) falling to such low values, unseating phenomena are likely to occur. 
The most significant examples of these low values occurred during the analysis are 
reported in Table 3.15 for both internal and external bearing in the 6 m pier. The 
situation at maximum response (t=24.54 sec) is also reported. Note that the vertical 
reaction under self weight alone is equal to 1500 kN. 

 

Table 3.15. Forces on bearings during earthquake response 

 External Bearing Internal Bearing 

Time (sec.) Shear (kN) Load (kN) Shear (kN) Load (kN) 

5.23 -469 305 -469 1119 

8.22 43 2639 43 1932 

8.26 -572 556 -572 1500 

24.54 291 1172 291 1388 

 
Response at 8.22 sec shows a case, opposite to the ones discussed above, in 

which the maximum vertical reaction of the bearings is nearly twice the static one. 
The full time history of the vertical reaction has been plotted as a function of the 
corresponding shear force in Figure 3.41. During the analysis the external bearing 
experiences a minimum ratio between vertical reaction Rv and shear force H equal to 
0.65, while the internal bearing has a minimum value of 2.26. 
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Figure 3.41. Vertical reaction as function of the corresponding shear force. 

This result confirms that bending- induced axial vibrations can produce severe 
effects when amplified by the presence of wide cap beams. Moreover, when the pier 
has a low aspect ratio, the level of axial accelerations induced by flexural cracks is 
particularly high. 

If the time-history analyses of the three structures are repeated using the 
longitudinal reinforcing ratios found dimensioning according to EC8 (see Table 
3.13), lower accelerations are found. Displacement ductilities at maximum response 
are 2.5, 3.5 and 4.0 for the 6, 12 and 18 m pier respectively, showing a remarkable 
accuracy of the EC8 methodology. Vertical accelerations at pier top are 20-25% 
lower with respect to the piers previously analyzed, showing that no direct 
proportionality can be established between axial impulse and pier ductility. This is 
confirmed by the fact that a 50% reduction in ductility for the EC8-6 m pier (with 
respect to the pier of previous analyses) is associated to a 20% reduction of the 
vertical accelerations while in the EC8-18 m the same reduction in vertical 
acceleration is associated with a doubling of displacement ductility. It is thus 
confirmed that the pier aspect ratio and the maximum horizontal acceleration 
response, rather than the global ductility level, have influence on the axial vibrations.  

The effect of the vertical ground motion component can now be introduced to 
attempt a quantification of the relative importance of the two different sources of 
axial vibrations. 

The analyses carried out above are repeated again for the first set of structures 
(i.e., allowable stress designed) with inclusion of a vertical motion with peak ground 
acceleration equal to 2/3 of horizontal peak acceleration. This ground motion 
component is still compatible with the EC8 response spectrum and has the same 
duration and starting time step of that of horizontal motion. In these analyses the two 
sources of axial vibrations are therefore taken into account and their effects appear 
combined. Maximum acceleration results are reported in Figure 3.42. The values are 



in all cases larger than the corresponding ones in Figure 3.38, where the ground 
vertical acceleration is absent, but it is perhaps surprising to note that the order of 
magnitude has not changed. In other words, from the ‘spot’ cases examined it would 
seem that the predominant contribution to the vertical response accelerations comes 
from the rocking mechanism, not from the vertical acceleration input. This is 
probably a hasty conclusion, not supported by adequate evidence and generality of 
the cases under consideration, but it is at least an indication that if vertical 
acceleration are of some consequence for the resistance of bridge piers and deck 
supports, the rocking mechanism effect should not be neglected.  
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Figure 3.42. Maximum acceleration results. 

3.3.4 Simple mechanical model for axial vibrations 

An attempt to establish a closed form approximate relationship between these 
axial vibrations and the pier flexural response will be presented herein. The main 
assumption is that cracked sections can be treated as rigid bodies during their motion 
induced by flexural response. In this idealization the sections rotate about a point that 
coincides with the position of the neutral axis. The impact of the sections during 
bending reversal will be assumed elastic with initial conditions (i.e., values of 
velocity and acceleration) found from the rigid body motion assumption. 

Assuming that plane sections remain plane the following rela tion holds 
between the curvature χ and axial elongation εp for a RC section: 

 dkp 







−χ=ε
2
1

 (1) 

where k is a scalar parameter ( 10 ≤≤ k ) defining the neutral axis depth (1-k)d.  



Let us now assume the flexural response of a generic section be described by 
a simple sinusoidal function as follows: 

 
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with fT  being the predominant flexural period of the pier. The section axial 
deformation, according to (1), can therefore be written: 
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where the absolute value of the sinusoidal function is taken since the axial elongation 
is always positive.  

In order to obtain simple expressions for the velocity and the acceleration of 
the axial strain (3) we assume that the position of neutral axis is fixed (i.e., k is 
constant), even though with increasing curvature the neutral axis tends to shift 
outwards (i.e., k increases). Axial displacement, axial velocity and axial acceleration 
as a function of time have been qualitatively plotted in Figure 3.43. 
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Figure 3.43. Axial displacement, axial velocity and axial acceleration as function of time. 

The velocity is discontinuous for 2fTnt =  (with n=1,2…). In these 
characteristic points, the section is subjected to a vertical impulse which reverses the 
displacement direction, changing sign to the axial velocity. These points correspond 
to the crack closure and the sudden shift of the neutral axis from one side of the 
section to the other (as depicted in Figure 3.43 in the section kinematics). These 



impulses are the main cause of the vertical oscillations observed in the analyses. 
Outside these points, the section is still subjected to a vertical acceleration as the 
result of  the flexural response. This component of the acceleration, smaller than the 
impulsive one at bending reversal, is found as the second derivative of (3). Its 
maximum value is : 
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In the following it will be shown that this component of the vertical 
acceleration is negligible when compared to that due to the impulse at bending 
reversal (see Eq.(7)).  

In order to obtain an estimate for the magnitude of this impulse, the 
assumption of rigid body motion must be relaxed and the impact at crack closure 
treated as an elastic rebound. We assume therefore that this ela stic impact takes place 
in a finite time interval ∆t. With these hypotheses, the impulse amplitude can be 
computed as follows : 

 ∫∫ ∆∆
==∆

tt
dtamdtfvm  (5) 

where m is the mass and f the inertia force. The velocity variation ∆v that takes place 
during the time interval ∆t can be set according to Fig.14 by computing the right and 
left limit of the first derivative of (3) for t → nΤf/2 . The time interval ∆t is 
tentatively set equal to one half the fundamental axial period of the pier-deck system 
( 2aTt =∆ ), so that ∆t corresponds to the compressive semi-cycle of the pier elastic 
rebound. Therefore, the velocity variation within the specified time interval is : 
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If we assume that the impulse has a sinusoidal shape, we obtain from (5): 
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where the π/2 factor is found by integrating the sinusoidal impulse over the time 
interval ∆t in (5). 

A simple relation between the pier maximum horizontal acceleration response 
and the curvature maximum acceleration can be easily obtained by assuming the 
flexural deformations taking place in a localised plastic hinge at the column base. In 
this case we obtain that the maximum acceleration at pier top is : 
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where cpl  is the plastic hinge length, H the pier height and ( )fTβ  is the ordinate of 
the acceleration response spectrum for the pier predominant flexural period. The 
simplification associated with this kinematic mechanism is valid for single column 
bents in general, also for members that tend to oscillate in double bending, because 
maximum curvature at column base is, in most cases, one order of magnitude greater 
than that at column top, where yielding of steel seldom occurs. 

Similarly, if the largest axial deformations take place within the plastic hinge 
region, as it is for the plastic rotations, the maximum value of the impulsive ( iva , ) 
component of the pier vertical acceleration can be written as: 
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The following remarks need to be made: 
• Eq. (9) has been derived by using the velocity reversal found with a rigid section 

kinematics hypothesis and therefore it should provide an upper bound estimate of 
the axial impulses  

• Eq. (9) should not be taken as an estimate of the structural response in the 
vertical direction but rather as an estimate of the axial input associated to the 
flexural response. However, large amplifications of this vertical input are 
unlikely since these vertical impulses have the same frequency of the pier 
flexural response, which is generally smaller than both pier and superstructure 
vertical frequencies. 

The numerical analyses presented above seem to show that, in spite of the 
crude approximation used in deriving Eq. (9), it still encompasses the governing 
variables of the problem. A comparison between the values found with Eq. (9) and 
the results of the non- linear analyses for the rigid deck model are presented in the 
following Table 3.16. Horizontal and vertical accelerations found from time-history 
analyses are indicated with hβ and vβ  respectively. The flexural period of the piers 

fT  has been calculated by using the secant flexural stiffness at maximum response 
(average stiffness). The axial period Ta instead has been computed using the cracked 
elastic stiffness and the neutral axis depth at maximum response. In this case study, 
both secant stiffness and neutral axis depth, were available from the results of the 
non- linear analyses; for design purpose instead, they should be calculated by using 
the assumed structural ductility or the maximum expected displacement, if a 
displacement-based design approach is being used. 

 
 



Table 3.16. Numerical analysis versus prediction with Eq. (9) 

Pier Height 
[m] 

βh 

 [m/sec2] 
βv  

[m/sec2] 
Ta 

[sec] 
Tf  

[sec] 
(k -1/2) av,i 

[m/sec2] 
βv / av,i 

6 4.12 3.96 0.10 0.69 0.27 3.19 1.24 

12 4.72 2.00 0.13 1.21 0.22 2.0 1.00 

18 3.83 1.43 0.15 1.92 0.18 1.22 1.17 
 
 
The results from Table 3.16 seem to ind icate the soundness of the 

assumptions used to derive Eq. (9) and the capability of it to provide a correct 
estimate of the magnitude of these axial vibrations. This is demonstrated by the 
stability of the computed values, which show a constant ratio with the results of the 
non- linear analyses, although referred to piers of different period and different 
response in both horizontal and vertical direction.  

From the cases presented above it seems that little or no amplification of the 
axial motion is found between pier base and pier top. However, it is important to note 
that the axial input found with (9) might have been overestimated due to the 
assumption of section rigid body motion.  

Results obtained with Eq. (9) are strongly affected by the value assumed for 
( )fTβ . In our case this value was given by the results of non linear time history 

analyses ( hβ ), whereas in design it must be found from a design spectrum based on 
the maximum expected ductility (i.e., behavior factor). Accuracy on iva ,  is therefore 
strongly influenced by the accuracy of the design methodology in estimating the 
maximum horizontal response. 

3.3.5 Conclusions 

Although experimental results are needed to confirm the predictions of the 
numerical study presented herein, there is no doubt that a significant contribution to 
the vertical acceleration in RC piers subjected to seismic excitation is due to the 
rocking mechanism. This contribution is neglected in ordinary design, based on 
linear modal analysis and response spectra. The intensity of this vertical acceleration 
may instead be greater than the structural response to the vertical component of the 
seismic input motion. In fact, the vertical acceleration associated with the rocking 
mechanism is generated by the horizontal acceleration response of the pier which is 
always greater than the horizontal ground motion input. 

The effect of this additional motion in the vertical direction can be 
particularly severe on deck bearings, which may experience the maximum horizontal 
shear forces associated with very low vertical reactions. This mechanism may 
provide an additional explanation for the widespread phenomenon of bearing failure 
and deck unseating observed during past earthquakes. 



When proposing a simple predictive equation for the quantification of this 
phenomenon, to be used together with the commonly accepted procedure of seismic 
design based on modal analysis and response spectra, one should take into account 
the following features of this mechanism:  

Direct proportionality seems to exist between bending- induced vertical 
oscillations and the horizontal acceleration of the pier, while the same cannot be said 
for flexural damage (i.e., maximum displacement ductility). 

The structural response to this axial input may have a larger impact than the 
response to the vertical component of the seismic ground motion since it has the 
same frequency as the flexural response.  

Based on the preliminary investigations presented herein, it seems that eq. (9) 
provides a reasonable estimate of the vertical accelerations in bridge piers of current 
use subjected to horizontal seismic input motion only. This equation could be used as 
a starting point towards the definition of a design formula for the quantification of 
this additional vertical component to be used in the dimensioning of bridges in 
seismic areas. The effect of maximum ductility and pier cross section configuration 
should be further investigated and possibly included in the equation. Results of the 
present model would greatly benefit from comparisons with experiments performed 
on shaking tables. 

 

3.3.6 References 

Elnashai, A.S., Bommer, J.J., Baron, C.I., Lee, D., Salama, A.I., (1995), “Selected 
Engineering Seismology and Structural Engineering Studies of the Hyogo-ken Nambu 
(Great Hanshin) Earthquake of 17 January 1995”, Research Report ESEE-92/2 , Imperial 
College, Sept. 1995. 

Elnashai, A.S., Papazoglou, A.J. (1997), “Procedure and Spectra for Analysis of RC 
Structures Subjected to Strong Vertical Earthquake Loads”, Journal of Earthquake 
Engineering, Vol.1, n.1, pp. 121-155, Imperial College Press.  

EUROCODE 8 “Design Provisions for Earthquake Resistance of Structures” ENV 1998-2: 
Bridges. CEN, Brussels, October 1994. 

JSCE (Japan Society of Civil Engineers), “The Great Hanshin Earthquake, January 17, 
1995”, Preliminary Report, 1995. 

Kowalsky, M.J., Priestley, M.J.N., Macrae, G.A. (1995) “Displacement Based Design of RC 
Bridge Columns in Seismic Regions”, Earthquake Engineering and Structural Dynamics, 
Vol.24, pp. 1623-1643. 

Mander, J.B., Priestley, M.J.N., and Park, R. (1988). “Theoretical Stress-Strain Model for 
Confined Concrete.” Journal Struct. Engrg., ASCE, 114(8), 1804-1826. 

Menegotto, M. and Pinto, P.E. (1977). “Slender RC Compressed Members in Biaxial 
Bending.” J. Struct. Engrg., ASCE, 103(3), 587-605. 

Mohammadioun, B. (1997), “Nonlinear Response of Soils to Horizontal and Vertical 
Bedrock Earthquake Motion”, Journal of Earthquake Engineering, Vol.1, n.1, pp. 93-
119, Imperial College Press.  



Ono, K., Kasai, H., Sasagawa, M. (1996), “Up-down Vibration Effects on Bridge Piers”, 
Special issue of Soils and Foundations, Japanese Geothecnical Society, pp. 211-218. 

Papalentiou, C., Roesset, J.M. (1993), “Effect of Vertical Accelerations on the Seismic 
Response of Frames”, Structural Dynamics – Eurodyn ‘93, Balkema, Rotterdam. 

Papazoglou, A.J., Elnashai, A.S., (1996), “Analytical and Field Evidence of the Damaging 
Effect of Vertical Earthquake Ground Motion”, Earthquake Engineering and Structural 
Dynamics, Vol.25., pp. 1109-1137. 

Petrangeli, M. (1996). “Modelli Numerici per Strutture Monodimensionali in Cemento 
Armato” Dissertation, University of Rome “La Sapienza”, Rome, Italy. (in Italian). 

Petrangeli, M. and Ciampi, V. (1997). “Equilibrium based numerical solutions for the 
nonlinear beam problem”, Int. Journal for Num. Meth. in Engrg., 40(3), 423-438. 

Petrangeli, M. and Pinto, P.E. (1998). “A Fiber Beam Element for cyclic bending and shear.” 
Proc. of “EURO-C 1998”, BadGastein, Austria. 



4 UPGRADING OF BRIDGE PIERS WITH FRP 

4.1 Properties and behavior of FRP-confined concrete 

A first step towards the comprehension of the response of bridge piers 
wrapped with FRP should aim at defining the behavior of concrete confined with 
FRP sheets. Although several experimental studies on this subject have been carried 
out (Fardis and Khalili 1981, Saadatmanesh et al. 1994, Howie and Karbhari 1995, 
Nanni and Bradford 1995, Seible et al. 1995, Picher et al. 1996), studies aiming at 
obtaining reliable and accurate numerical models are still in a development phase. 
An FRP jacket, as opposed to a steel one that applies a constant confining pressure 
after yield, has an elastic behavior up to failure and therefore exerts a continuously 
increasing confining action. The amount of this action depends on the lateral dilation 
of concrete, which in turn is affected by the confining pressure. A major obstacle to 
the development of a reliable concrete model is the lack of a simple analytical 
expression describing the interaction between the laterally expanding concrete and 
the confining device.  

4.1.1 Basis model for unconfined concrete 

A general but simple constitutive model for unconfined concrete under 
uniaxial compressive loading (Pantazopoulou and Mills 1995) is used as a basis  for 
the following developments. In this model, the uniaxial stress response ′fc  of plain 
concrete under compressive axial strain εc  is described by 

                          ′ = =
+

=
+
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l
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cE E E Esec secε
εβ β ε

1
1

1
1 2

 (1a,b) 

The innovative aspect is that the area strain ε A  is taken as a measure of the internal 
damage from cracking, which reduces the current secant modulus Esec , starting from 
the initial tangent modulus Ec . The constant β  (here, the reciprocal of that given in 
the original paper is considered) is a property of concrete and will be discussed 
below. Note that in (1b) the assumption of radial symmetry (ε εA l= 2 ) is adopted, 
which allows to point out the dependence on the lateral strain ε l . Sign convention is: 
compressive εc  and ′fc  are negative and dilating ε A  and ε l  are positive. 

The variation of the unrestrained lateral strain ε l  under the imposed axial 
strain εc  is evaluated with an experimentally derived formula (Figure 4.1), which, 
under the assumption of radial symmetry, is expressed as 
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where ν= Poisson’s ratio, ε lim .≈ − 0 001 = limit axial strain beyond which 
microcracking starts, and α εco  = axial strain at volume strain ε ε εV A c= + = 0 , 



being α = ÷0 9 10. .  for unconfined concrete and εco ≈ − 0 002.  = strain at unconfined 

peak-stress ′f co . The McAuley brackets ( )xxx += 5.0 , indicate that the squared 
term is only considered when ε εc < lim . 
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Figure 4.1. Volume, area and lateral strain vs. axial strain for unconfined concrete. 

Pantazopoulou and Mills (1995) proposed to evaluate the constant β  from the 
volume fraction of paste and the water-cement ratio. However, it seems more 
convenient to express β  in terms of readily available mechanical properties of the 
unconfined concrete, such as ′f co , εco  and Ec . Here, a formula is suggested that is 
valid for a wide range of different concrete types. To this aim, it is noted that, since β  
is a constant, i.e., independent of εc , it can be calculated from (1b) in 
correspondence to a convenient value of εc . Selecting ε εc co= , one has 

 β
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−E Ec o
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sec 1
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so that β  is only dependent on the unconfined concrete properties ′f co , εco , Ec , ν 
and α. Alternatively, an explicit formula can be derived by letting α = 10. , for which 
one has ε εlo co= − 1

2 , and the constant β  becomes: 
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Note that β  can be expressed as a function of only the unconfined concrete 

strength ′f co , by assuming εco = − 0 002. and E fc co= ′5700  (MPa) : 
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500
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co

co          (  in MPa)  (6) 

even though it should be remarked that this formula is correct if the estimated value 
of Ec  is close to the actual elastic modulus. 

4.1.2 Concrete model with elastic confinement 

Eq. (2) models the lateral expansion as function of the monotonic axial 
compressive strain, only for the case of laterally unrestrained (unconfined) concrete. 
In the case of confined concrete, this relation should be modified to account for the 
confinement pressure exerted by the confining device, either constant, as applied by 
yielding devices (steel), or increasing, as applied by elastic devices (FRP). It is clear 
that, due to the experimental nature of the formula, any modification should be 
substantiated by quite a large amount of experimental data for different levels and 
types of confinements. An alternative and more general procedure is here proposed, 
by which the lateral dilation of concrete is implicitly derived through equilibrium of 
the dilating concrete and the confining device.  

The starting point is a well-known stress-strain model for confined concrete 
(Mander et al. 1988a,b), which has been extensively tested against experimental data. 
The model, also of the ′ −f c cε  type, is based on the formula (Popovics 1973) 
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where εcc  = compressive strain at confined peak strength ′f cc . The confined peak 
strength ′f cc  is expressed in terms of a constant effective confining pressure fl  as: 
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The effective confining pressure is calculated as function of the transverse steel 
volumetric ratio ρs  and its yield stress fs , as follows: 

 f k fl e s s=
1
2

   ρ       with      ρs
s
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A
s d
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 (10) 

where ke  = arching-effect coefficient, s = spacing (pitch) of hoops (spiral), and ds  = 
diameter of hoops (spiral). 
 

In recent years, researchers have attempted to extend Mander’s model to 
predict the behavior of concrete accounting for the effect of confinement provided by 
elastic FRP jackets. A major obstacle is that this model is based on a constant value 
of the confining pressure throughout the loading history. In reality, passive 



confinement increases as concrete expands laterally, its amount depending on the 
stress-strain law of the confining device. For the case of steel transverse 
reinforcement, the constant confining pressure assumption is realistic when the steel 
is in the yield phase: therefore, Mander’s model correctly represent s the behavior of 
steel-confined concrete, except for the initial phase when steel is still elastic. 
Conversely, FRP behaves elastically until failure, and the inward pressure increases 
continuously, so that this assumption is not appropriate. Therefore, the following 
approach is taken. 

Eqs. (1a,b) are rewritten as 
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and merged into a single equation 
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where the dependence of the quantities ′f c  and ε l  on the current strain εc  and the 
confining pressure f l  is rendered explicit. The constant β  is evaluated as proposed in 
the previous section.  

Once ε l  is calculated from (12), the strain ε j  in the confining jacket can be 
found (e.g., for the case of axially loaded concrete cylinders it is simply: ε εj l= ), 
along with its current stress f Ej j j= ε , with E j  = the modulus of the composite 
material of the jacket. The corresponding confining pressure fl  can be evaluated 
analogously to (10) as 
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where it should be noted that ke = 1 for jackets. 
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Figure 4.2. Iterative procedure. 



This updated value of fl  can be used for a new estimate of ε l  through (12), 
giving rise to an iterative procedure (Figure 4.2) until fl  converges to a stable value. 
The whole procedure is repeated for each εc , over the complete stress-strain curve. 
This latter can be regarded as a curve crossing a family of Mander’s curves, each one 
pertaining to the level of confining pressure corresponding to the current lateral 
strain. The stress-strain characteristics of the confining mechanism are explicitly 
accounted for, while the lateral strain of concrete is implicitly obtained through the 
iterative procedure. All numerical tests have shown that convergence is very fast. 

4.1.3 Some considerations on modeling concrete confined with steel or FRP 

The proposed model is here used to simulate the monotonic behavior of 
concrete confined with three different jacket types: steel, carbonfiber (CFRP) and 
fiberglass (GFRP). The purpose of these comparisons is to identify, mainly from a 
qualitative standpoint, the main aspects of the confinement action mechanisms in the 
three cases and compare the relative effectiveness of the three materials, before 
proceeding to model the experimental results.  

The unconfined concrete properties of this example are: ′f co  = 35 MPa, εco  = 
0.002, Ec  = 29,580 MPa, ν  = 0.20, and α  = 0.90, therefore β  = 303 through (3) 
and (4a,b). The FRP jackets consist of plies with 0° winding angle, whose 
mechanical properties are listed in Table 4.1 along with those of steel. It is remarked 
that the same confinement volumetric ratio ρ j  is considered in the three cases. In this 
example and the following tests, all quantities related to the FRP material (E j , f ju  

and ε ju ) are computed through the Classical Lamination Theory (see, e.g., Kim 
1995) from the characteristics of each ply. 

For steel-confined concrete, the ultimate compressive axial strain is computed 
through an experimentally derived formula (Seible et al. 1995a): 

 ε
ρ ε
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cc
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   1.4
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where f ju ,ε ju  = steel yield strength and ultimate strain, respectively, and ′f cc  = 
confined concrete strength, computed with (9) and (13) with ε εj ju= . 

For FRP-confined concrete, the ultimate compressive axial strain of concrete 
is considered to be attained when: 

 ε εl ju=  (15) 
that is, when the lateral strain of concrete reaches the ultimate or allowable strain of 
the FRP material (under multiaxial state) and the jacket fails (no progressive ply 
failure is considered). This definition of failure exploits the characteristic of the 
proposed model, in which the lateral strain is tracked stepwise. It will be used in the 
parametric study presented in the next section to arrive at an explicit predictive 
equation of the ultimate strain of concrete. 



Table 4.1. Properties of confining devices ( E j = elastic modulus, f ju = yield or ultimate strength, 
ε ju = ultimate strain, ρ j = confinement volumetric ratio). 

Jacket material Fiber/resin E j (MPa)  f ju (MPa)  ε ju (%)  ρ j (%)  

steel -- 204,000 440 12.0 1.60 

Carbonfiber (CFRP) AS / Epoxy 138,000 1447 1.05 1.60 

Fiberglass (GFRP) E-glass / Epoxy 38,600 1062 2.75 1.60 
 
In all the next graphs, differences in behavior are evidenced for the three 

jacket types considered. All the stress and strain quantities are normalized with 
respect to ′f co  and εco , respectively. In Figure 4.3 (top, left), the stress-strain relation 
is shown. Here, a fundamental difference can be observed: the FRP-confined 
concrete shows a continuously increasing branch, as opposed to the steel-confined 
one, which, after reaching the peak strength, decays on a softening branch. As 
suggested by (1b), concrete degradation is proportional to the lateral strain: the 
increasing confinement action of the elastic FRP limits the lateral strain thus 
delaying the degradation; on the other hand, when steel yields, which occurs at 2.5 
normalized axial strain, degradation of concrete takes place, because steel offers a 
zero stiffness to the lateral dilation of concrete. 

The idea emerges from these graphs, which will be confirmed in the next 
sections, that CFRP should be used to provide concrete with higher strength increase 
and moderate ductility, whereas GFRP should be used to provide higher ductility and 
moderate strength increase. As regards the ultimate strain, and therefore the ductility 
attained through the confinement action, it should be noted that, notwithstanding the 
low values of ε ju  of the FRP-jackets, in these cases the ultimate strain is comparable 
or even greater than that obtained through the use of a ductile confining device, i.e. 
steel. This supports the consideration (Mirmiran et al. 1996) that the energy-balance 
approach (Mander et al. 1988a), which reckons the concrete ductility proportional to 
the energy stored in the confining device, cannot be extended to the case of FRP. In 
fact, the energy stored in the steel, the CFRP, and the GFRP jackets is, respectively: 
51.8 MPa, 7.6 MPa, 14.6 MPa, and the latter two would give rise to ultimate concrete 
strains significantly lower than those actually observed and obtained through (15).  

In order to account for this different behavior, it has been proposed (Seible et 
al. 1995b) to adopt the same predictive equation as (14) with a coefficient 2.5-2.8 
instead of 1.4. However, in the following sections it will be shown that, when FRP 
jackets are used, the ultimate axial strain of concrete is only weakly governed by the 
ultimate confinement pressure (proportional to ρ j juf ), whereas it is mostly 
dependent on the ultimate deformation. This is proven by the fact that the fiberglass-
confined specimen shows an almost twice as large deformability than the 
carbonfiber-confined one, although the ultimate confinement pressure of the latter is 
roughly 50% larger. Following these considerations, in the next sections, a different 
predictive equation will be derived, consistently with the actual mechanics of the 
confining device. 
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Figure 4.3. Modeling of behavior of concrete confined with steel, CFRP and GFRP: 
axial stress vs. axial strain (top, left), lateral strain vs. axial strain (top, right),  

volume strain vs. axial strain (bottom, left), dilation rate vs. axial strain (bottom, right). 

In Figure 4.3 (top, right), the lateral-axial strains relation is shown. It can be 
observed that the branches slope depends on the stiffness of the confining device 
(also observed in the previous diagram): steel and CFRP start with almost the same 
slope, but after steel yields at 2.5 normalized axial strain, it departs towards higher 
lateral strains. GFRP shows a more stable behavior, in the sense that it starts with a 
higher slope (meaning that concrete has a higher initial lateral dilation), which 
however remains constant until the jacket fails. CFRP reduces the initial lateral 
strain, but its effectiveness has a shorter duration, due to its lower ultimate strain ε ju . 

This can be better appreciated in Figure 4.3 (bottom, left), where the dilation 
rate µ = ∆ε ∆εl c  (lateral strain increment ∆ε l  per axial strain increment ∆εc ) is 
given as function of the axial strain. It is seen that when steel yields a discontinuity 
occurs, due to the abrupt change in modulus; after this, the dilation rate increases 
indefinitely. Conversely, for FRP, it constantly decreases towards an asymptotic 
value. Note that the position of the point where the confinement action starts 
becoming effective (i.e., when the branches depart from the unconfined one) depends 
on the stiffness of the confining device: the GFRP-confined concrete departs later 
than the other two. This is the point where a sufficient lateral pressure deve lops that 
prevents the lateral dilation of concrete from increasing unrestrained. 



In Figure 4.3 (bottom, right), it is interesting to observe from the volume 
strain vs. axial strain curve that for the CFRP jacket the vo lumetric strain first 
decreases, as expected, then reverts to zero and beyond a certain level of axial strain 
the ever increasing confinement pressure curtails the volumetric expansion and 
inverts its direction. 
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Figure 4.4. Comparison of confinement effectiveness. 

In Figure 4.4, left, the confinement effectiveness (lateral stress vs. axial 
strain) for all three types of jackets is compared. It is explicitly shown what expected, 
that is, before yielding the steel jacket exerts a higher confining action, which 
however remains constant after yield, whereas the FRP jackets show a monotonically 
increasing confinement, thus arriving at applying a confinement action twice (GFRP) 
or thrice (CFRP) that of steel, with the same volumetric ratio ρ j . In Figure 4.4, right, 
it is interesting to compare the jacket effectiveness expressed in terms of ratio of the 
lateral stress to the current axial stress. It is seen that the increase in the steel jacket 
effectiveness after yield is only due to the softening behavior of concrete, whereas in 
the other two cases it is the elastic behavior of the FRP jackets that increases the 
ratio. Here it should be evident how the two FRP materials reach almost the same 
level of effectiveness, but at different axial strain levels, which again renders more 
attractive the use of GFRP jackets that also exploit ductility while maintaining the 
same effectiveness of CFRP jackets. 

From these results some very preliminary conclusions can be drawn, which 
however do not lack a certain generality, also considering that the values selected for 
the FRP materials are deemed to be representative of a large class of composite 
materials that are used for wrapping interventions. The effectiveness of an FRP 
confinement is mainly to ascribe to the modulus and the ultimate strain rather than to 
its strength. Thus, it can be affirmed that GFRP wrapping provides concrete with a 
more “effective” confinement than CFRP (even more, if cost considerations are 
taken into account) in terms of strength increase and ductility enhancement. These 
considerations will be confirmed in the next sections where comparisons with test 
results are carried out and predictive equations are developed. 



4.1.4 Comparison with experimental results 

Generally, in experimental tests performed on axially loaded cylindrical 
concrete specimens wrapped with FRP sheets, the measured quantities are: axial 
stress, axial strain and radial strain (equal to the transverse strain in the jacket). 
According to (15), failure of the wrapped specimen is expected when the radial strain 
ε l  equals the jacket ultimate strain ε ju . However, experimental evidence shows that 
failure mostly occurs at lower radial strains. This reduction is due to the fact that 
FRP jackets undergo a triaxial stress state.  

This is shown in Figure 4.5, where the concept of composite action is 
introduced, which denotes the ability of the jacket of providing transverse 
confinement and, at the same time, longitudinal load-carrying capacity. This latter 
depends on the bond interface characteristics, which in turn depend on a large 
number of factors, such as stiffness of the glue layer between jacket and concrete 
specimen, roughness of jacket and concrete surface, and bond transfer length. 

 

transverse compressive stress
when in full composite action

transverse compressive stress
gradient from confinement pressure

axial tensile stress due
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Figure 4.5. Triaxial state of stress in FRP jackets. 

In case of no composite action, the jacket only undergoes transverse strains 
and therefore can only fail in extension mode, due to either fiber collapse or 
delamination between plies. Moreover, if one wants to consider the transverse 
compressive stress gradient in the jacket due to the confinement pressure (Figure 
4.5), failure occurs when the concrete radial strain ε l  reaches a value even slightly 
lower than ε ju . In case of full composite action, the jacket undergoes both transverse 
and longitudinal strains. The extensional ultimate stress and strain are then reduced, 
with potential microbuckling and delamination to develop. Thus, failure of the 
specimen occurs at even lower radial strains than in case of no composite action. 

The above considerations will help the interpretation of the following 
correlation studies, where three sets of tests on FRP-confined concrete specimens are 
used as benchmarks for the proposed model. 



4.1.4.1 Tests by Picher et al. (1996) 

Tests were carried out on five concrete cylinders (152 mm in diameter and 
304 mm in length): one unconfined and four confined with different configurations 
of carbon-fiber sheets. The sheets consisted of three layers, wrapped around the 
concrete specimens with winding angles: [0°3], [0°, ±6°], [0°, ±12°] and [0°, ±18°]. 
The unconfined concrete properties were: ′f co  = 39.7 MPa, εco  = 0.002, Ec  = 
31,500 MPa, ν  = 0.20 and α  = 1.0. Through (5) it was computed: β  = 294. 

 
Table 4.2. Results of experiments and of analyses with the proposed model. 

  experiment analysis 

Cylinder E j (GPa) f fcu co′  εcu (%)  ε lu (%)  f fcu co′  εcu (%)  ε lu (%)  

unconf. 0.0 1.00 0.20 0.65 1.00 0.20 0.65 

C18 70.2 1.16 0.66 0.50 1.19 0.58 0.50 

C12 77.4 1.24 1.03 0.64 1.26 0.75 0.64 

C6 81.9 1.32 0.88 0.72 1.31 0.86 0.72 

C0 83.0 1.41 1.07 0.84 1.35 1.01 0.84 
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Figure 4.6. Axial stress vs. Axial strain. Figure 4.7. Axial stress vs. Radial strain. 

The experimental ultimate strain of the CFRP-sheet with 0° winding angle 
was 1.5%, which coincided with the value given by the manufacturer. However, the 
concrete cylinders failed at lower radial strain values (0.84%), because the sheets 
were in full composite action with the concrete (a thin layer of concrete glued to the 
innermost composite layer was always observed on the failed specimen). The 
observed failure modes under composite action clearly show a load-carrying action 
of the sheets in the axial direction, which reduces the ultimate stress and strain in the 
radial direction. Therefore, in these correlation studies, the ultimate strains of the 
sheets were taken equal to the values of the ultimate lateral strain measured in the 
experiments (fifth column in Table 4.2), and not equal to those given by the 



manufacturer. Therefore, the purpose of these comparisons regards essentially the 
ultimate characteristics (i.e., strength and strain) of concrete. 

As it can be seen in Table 4.2 and Figure 4.6 and Figure 4.7, the agreement 
between analytical (solid lines) and experimental results (markers) is very 
satisfactory. 

4.1.4.2 Tests by Kawashima et al. (1997) 

Kawashima et al. (1997) performed a set of experiments on cylindrical 
reinforced concrete specimens, confined with carbon fiber sheet jackets with 
different elastic moduli and volumetric jacket ratios ρ j  ranging from 0.5% to 1.3%. 
The specimens were 200 mm in diameter and 600 mm in height, and were provided 
with a longitudinal steel reinforcement ratio of 1%, with yield stress fyh  = 295 MPa, 
whose contribution is here subtracted from all the experimentally measured stresses. 
Tests were conducted on three series of four concrete specimens: a) unconfined, b) 
wrapped with normal modulus (250 GPa) carbon-fiber sheets, and c) wrapped with 
high modulus (439 GPa) carbon-fiber sheets, two of which, specimens H3 and H4, 
are examined here. 

The average unconfined peak strength was ′f co  = 39 MPa, while the concrete 
elastic modulus was inferred from the tests as Ec  = 20000 MPa. With εco  = 0.0034, 
the simplified expression (5) yields β  = 207 for both specimens. 

 

Table 4.3. Results of experiments and of analyses with the proposed model. 

     experiment analysis 

Spec. E j (GPa)  ρ j (%)  f ju(MPa)  ε lu(%)  fcu (MPa)  εcu(%)  fcu(MPa)  εcu(%)  

H3 439 0.676 2810 0.63 70.1 1.15 77.2 1.39 

H4 439 1.352 2327 0.53 89.8 1.52 90.8 1.45 
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Figure 4.8. Axial stress vs. axial strain. Figure 4.9. Axial stress vs. radial strain. 



In Table 4.3 the mechanical properties of the two specimens are listed, along 
with the experimental results and those obtained from the analyses. 

In Figure 4.8 and Figure 4.9, the curves for the axial stress vs. axial strain, 
and axial stress vs. radial strain, respectively, are shown. 

From Table 4.3 and Figure 4.8 and Figure 4.9, it can be seen that the 
agreement between the proposed model and the experimental data is extremely 
satisfactory for the axial stress vs. axial strain. In the axial stress vs. radial strain 
graphs, there is a significant discrepancy in the earliest range of deformation, which 
however does not affect the axial modeling; however, with increasing deformation 
the differences become smaller. The ultimate point on the axial stress vs. axial strain 
graph is rather overestimated for the specimen H3, while it is determined with 
excellent accuracy for the specimen H4. 

4.1.4.3 Tests by Mirmiran and Shahawy (1997) 

A total of 24 concrete-filled FRP tubes and 6 plain concrete specimens were 
tested. All 30 specimens were cylindrical (152.5 mm in diameter and 305 mm in 
height), and divided in three batches with different strengths and water-to-cement 
ratios. Here the results of the proposed model are compared to the third batch, with 
the following properties: ′f co  = 32 MPa, εco  = 0.002 and Ec  = 30,000 MPa. It was 
estimated that ν = 0.16 and α  = 0.90, therefore, by using (4b) it results: ε lo  = 
0.00128, and with (3) β  = 343. 

The FRP tubes consisted of a filament-wound angle-ply laminate of polyester 
resin with unidirectional E-glass fibers at winding angle θ  = ±15°. Direct interaction 
between jacket and concrete in the axial direction was prevented. Three different 
tube thicknesses were tested, with properties as listed in Table 4.4. 

 

Table 4.4. Properties of FRP encasing 

Specimen E j (MPa)  ρ j (%)  f ju(MPa)  ε ju(%)  

6-layer tube 37233 3.41 696 1.87 

10-layer tube 40336 5.51 565 1.40 

14-layer tube 40749 7.87 550 1.35 
 
Close to the ultimate load, local buckling and waving in the tubes were 

observed, but shear failure was noted as the primary mode of failure. The observed 
failure process clearly shows a composite action, with a partial ply failure 
mechanism: the resin fails in transverse or shear stresses, but the tube still has a load-
carrying capacity left, until the fibers fail. 

In Table 4.5 and Figure 4.10 through Figure 4.13, the experimental data are 
compared to the results of the proposed model. 

 



Table 4.5. Results of experiments and of analyses with the proposed model. 

 experiment analysis 

Specimen fcu(MPa) εcu(%)  µmax  µu  fcu(MPa)  εcu(%)  µmax  µu  

unconf. 32.0 0.20 --- --- 32.0 0.20 --- --- 

6-layer 59.95 3.45 1.364 0.435 64.69 3.42 1.047 0.429 

10-layer 76.46 3.71 0.879 0.304 81.08 3.77 1.0 0.292 

14-layer 84.40 4.24 0.774 0.233 91.85 4.13 1.0 0.262 
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Figure 4.10. Axial stress vs. axial strain. Figure 4.11. Axial stress vs. radial strain. 
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Figure 4.12. Axial stress vs. volume strain. Figure 4.13. Dilation rate vs. axial strain. 

From Figure 4.10 it is seen that the ultimate strengths calculated with the 
proposed model are higher (less than 10%) than the experimental values. On the 
other hand, the stiffness of all three specimens at larger deformations is equal to the 
experimental results and the ultimate axial strains show close agreement. In the 
earliest range of axial deformation (from 0% to 1%) the stresses are overestimated, 
while beyond this range the values get closer to the experimental ones, as also 



observed in Figure 4.11. In Figure 4.12 the significantly different volumetric change 
can be observed: after reaching the peak strength, the specimen with 6 layers shows a 
volume expansion, while the two others both have a volume contraction. In all three 
cases the trend is correctly modeled. It should be noticed that, though the strain 
values are not exactly determined, this has low influence on the axial stress vs. axial 
strain behavior. 

The observed differences may be explained by the way the specimens were 
manufactured: the FRP encasing was made first, and then filled with concrete after 
curing. It is suspected that the concrete shrinkage could have caused a gap between 
encasing and concrete surface, thus delaying the deformation of the FRP encasing 
upon loading of the specimens. In other words, in the early range of loading the 
concrete laterally deformed at a high rate in an unconfined state, before reaching the 
encasing and activating the confining mechanism. This can be inferred from Figure 
4.13: the dilation rate in the range of axial strain of 0% to 1% as calculated by the 
proposed model is lower (around 35%) than observed in the experiments, but beyond 
the axial strain of 1% the values show very close agreement. 

4.1.5 Predictive equations of FRP-confined concrete properties 

In the previous section, the specimens collapse was identified with the 
condition (15), at which the ultimate strength and strain of concrete were evaluated. 
In all cases, the simulations were conducted by imposing, as ultimate strain of the 
jacket, the value measured in the test and then the resulting ultimate strength ′f cu  and 
strain εcu  of concrete were compared with the experimental ones. In many cases, it 
is useful to know in advance the value of the ultimate strength and strain, by means 
of expressions that directly give the values of interest without carrying out the entire 
test. The objective of this section is to develop practical formulae to evaluate the 
ultimate compressive strength and strain for concrete confined with FRP, which 
should be useful for design practice. 

For the case of steel-confined concrete, εcu  is predicted through an energy-
balance method (Mander et al. 1988a), in which it is assumed that the increase in 
strain energy capacity of compressed concrete due to confinement be provided by the 
confining device strain energy capacity. The ultimate strain energy capacity of the 
confining device is given by the area under the stress-strain curve times the 
volumetric ratio. When this is attained, the confining device collapses and the 
corresponding concrete strain is taken as the ultimate strain. However, it has been 
commented (Mirmiran et al. 1996, and also above) that the energy-balance method 
cannot be extended to the case of FRP confinement.  

Two approximate formulae are developed for the ultimate concrete 
compressive strain and strength, based on regression analyses of results obtained 
through the model presented above. The observed behavior in experimental tests 
suggests that the ultimate strength and strain have a direct dependence on: the 
ultimate strain of the confining member ε ju , the maximum confinement pressure 



flu , and the concrete modulus Ec , while they have an inverse dependence on the 
unconfined concrete strength ′f co . 

Thus, three independent parameters were identified: 

 f
f
flu

lu

co
=

′
          ε ju           E

E
fc

c

co
=

′
 (16) 

and were made to vary within their respective extremes, identified as: f lu = ÷0 2 , 
ε ju = ÷0 0 03. , Ec = ÷700 1200 .  The upper bound of f lu , though unusually high, 
can occur for example in a 30 MPa concrete cylinder of 100 mm diameter, wrapped 
with a 2 mm thick jacket, having an ultimate strength of 1500 MPa. The range of ε ju  
was selected considering a considerable amount of experimental data on composite 
materials, while the range of Ec  was selected considering a 20% variation of the 
concrete’s effective elastic modulus with respect to the conventional average value of 
5700 ′fco  (MPa), for a range ′ = ÷f co 30 50  MPa. Two minor assumptions were 
made: εco = 0 002. , and α = 1 (the latter allows use of (5) for the determination of 
β ), which are however valid for most concretes.  

From the resulting 600 cases, the two following predictive equations were 
obtained:  

 ( )lucocu fff 32.0 +′=′  (17) 

 ( )lujuccocu fE ε+ε=ε 25.12  (18) 

Note that for no confinement ( f lu = 0) the resulting parameters are those of an 
unconfined concrete with εcu = 0 004. and ultimate strength equal to 20% of the peak 
strength, which is the value usually adopted for it. It is again emphasized that, for the 
considerations given above, the value of ε ju  to input in (18) should be computed 
from f Eju j , and not taken from the manufacturer. 

4.1.6 Agreement with experiments 

The values of the ultimate strength and strain obtained with the predictive 
equations (17) and (18) were compared with several experimental data (Picher et al. 
1996, Harmon et al. 1995, Kawashima et al. 1997, Mirmiran and Shahawy 1997, 
Karbhari and Gao 1997). The results are shown in Figure 4.14 and Figure 4.15. 

From Figure 4.14 it can be seen that the predictive equation for the ultimate 
strength shows a satisfactory correlation with the experiments, with the only 
exception of two tests conducted by Harmon, which were carried out on high 
strength concrete, outside the range considered in the parametric study. Excluding 
these two cases, the maximum error in the predictions was 9%, while the average 
error was 6%.  
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Figure 4.14. Comparison of (17) with experimental data of ultimate strength. 

In Figure 4.15 the ultimate strains predicted with (18) are compared with the 
considered tests. In this case the error is higher (about 14% in average) but still 
acceptable. 

From the above results it is concluded that both (17) and (18) can be used 
with a reasonable accuracy to predict the ultimate strain and strength of normal 
strength concrete confined with FRP. 
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Figure 4.15. Comparison of (18) with experimental data of ultimate strain. 



4.2 Response of FRP-wrapped sections  

The next step towards the development of a design equation for determining 
the optimal thickness of FRP wrappings to enhance the ductility of existing r.c. 
bridge piers is the insertion of the above-developed FRP-confined concrete model 
into a fiber section model. 

The fiber section model allows to trace the behavior until  collapse of r.c. 
sections under constant axial load (as is the case for bridge piers under earthquake 
loading, if the vertical component of the seismic action is neglected) and imposed 
curvature (Monti et al. 1996). Sections are discretized into fibers of unconfined 
concrete (cover), confined concrete (core), steel rebars and FRP jacket. 
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Figure 4.16. Model of fiber section. Section without wrapping (right), and FRP wrapping (left).  
The symbols are: DI= Diameter, C= Concrete cover thickness, NB= Number of bars,  

NR= Number of radial subdivisions, NA= Number of angular subdivisions, DE= External diameter. 

As shown in Figure 4.16, left, in the initial state, before upgrading, the section 
is made of fibers representing the concrete cover, the concrete core and the steel bars. 
In the upgraded state, right, an FRP jacket is added around the initial section, under 
the assumption of perfect bond on the concrete surface. It is well known that FRP 
jackets apply a deeply different confinement effect with respect to steel confining 
devices: these latter apply a constant confinement pressure after yielding, while FRP 
exerts a continuously increasing confinement pressure. In the presence of FRP 
confinement, the existing confinement models are inadequate to represent the 
continuous interaction between the expanding concrete and the elastic FRP jacket, 
and therefore the above-presented FRP-confined concrete constitutive model 
(Spoelstra and Monti 1999), which correctly accounts for such a peculiar behavior, 
has been implemented in the fiber section model. 

A problem regards the distribution of the confining pressure over the cross 
section. Let us consider a circular section with a linearly distributed axial strain field 
imposed on it. It is assumed that, at a given distance from the section’s centroid, the 
lateral strain can be calculated, by means of the proposed model, from the 
corresponding axial strain. On the circumference, this allows to calculate the 
transverse strain in the jacket from the corresponding radial strain, and therefore the 
stress in the jacket and the induced confining pressure. This amounts to assuming 



that the confining pressure only depends on the distance from the neutral axis (Figure 
4.17). 

This assumption has been verified in numerical analyses conducted in the 
linear range (Monti and Spoelstra 1997) giving results that corroborate the chosen 
simplified approach. More refined analysis are being carried out with advanced 
nonlinear FE codes to account for the nonlinear behavior of concrete under triaxial 
stress states. 
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Figure 4.17. Calculation method for confining pressure f l  and concrete strength σ 1 . 

In most cases, retrofitting of existing bridge piers only concerns enhancement 
of ductility, while normally flexural strength is adequate. It is believed that 
composite action between jacket and pier should be avoided as much as possible, 
since it generally enhances flexural strength to a larger extent than ductility. Also, a 
study by Orito et al. (1987) reported that unbonded concrete-filled steel tubes would 
perform better than bonded tubes, because in the former case the jacket does not 
undergo longitudinal stresses. Therefore, the jacket will not buckle, and will continue 
confining the pier up to its maximum strength. 

These considerations imply that a fiber winding-angle of 0° is the most 
effective, when no composite action is foreseen, even though, in reality, a certain 
degree of composite action between pier and FRP jacket cannot be excluded a priori, 
so that, in general, it is to be expected that, with 0° winding-angle, the jacket will fail 
under longitudinal tensile strains, due to separation of parallel fibers. A jacket made 
of several plies with different winding-angles would be a more practical option. 

Special care should be devoted to the shear capacity of a retrofitted pier. 
Because there will always be some degree of composite action, the flexural strength 
will increase. Since the shear capacity should always exceed the flexural capacity, in 
order to avoid brittle shear collapse, it should be checked that the shear capacity is 
still adequate after retrofitting. 

As an example of retrofitting a pier with an FRP jacket, a moment-curvature 
analysis has been carried out with the programs CYRUS (Monti et al. 1996). 

The cross-section of the selected pier, taken from another parametric study 
(Mirmiran et al. 1996), is shown in Figure 4.18. 
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Figure 4.18. Typical reinforced concrete pier section. 

The pier is 1500 mm in diameter and has 36ø40 mm rebars (total area: 45,240 mm², 
with ρs = 2.94%) having yield strength 440 MPa and ultimate strain 12%. The 
unconfined concrete properties are: ′f co = 35 MPa and E0 = 29,580 MPa. The 
transverse reinforcement consists of ∅16mm ties at a spacing of 80 mm (ρt= 0.72%).  

 
Table 4.6. Equivalent mechanical properties of CFRP/GFRP jacket, 

with corresponding ultimate axial strain of concrete. 
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Figure 4.19. Numerical monotonic analyses:  

1- full composite action, 2- no composite action, 3- as built. 

The pier is confined with layers of carbonfiber/epoxy composite material, 
with fiber winding-angle of ±15°, and with layers of fiberglass/epoxy, with fiber 
winding-angle of ±75°. For the sake of example, a jacket thickness of 9 mm has been 
chosen: this value is much larger than those usually adopted in practice, but it allows 
to amplify the differences between the different behaviors, before and after 



upgrading. Thus, with a total thickness of the jacket of 9 mm and using the CLT 
relations, the mechanical properties of the jacket result as in Table 4.6, where the 
indices x and y denote the directions orthogonal and parallel to the pier longitudinal 
axis, respectively; the corresponding ultimate strain for concrete, as evaluated with 
the proposed model, is also shown. 

The results of the monotonic analyses are shown in Figure 4.19, where the 
effects of having full composite action or no composite action can be observed. In 
Table 4.7 the quantities of interest for upgrading (moment and curvature) are listed 
along with the resulting ductility factors. 

 
Table 4.7. Curvature ductility factors for the retrofitted pier. 

Pier My [kNm] φy [1/m] Mu [kNm] φu [1/m] µφ 

As-built 12848 0.0031 17418 0.0320  10.3 

Full comp. 14589 0.0030 28254 0.0283   9.4 

No comp. 13753 0.0030 22072 0.0820 27.3 
 

Table 4.8. Properties of the different confining mechanisms. 

Column 
ρt  

(%) 
E j  

(MPa) 

f fy u or   

(MPa) 

ε εj u lat u, ,=
(%) 

εcu  

(%) 

As-built 0.72 200000 400 12.0 1.58 

Steel jacket 2.67 200000 400 12.0 3.60 

CFRP jacket 2.13 87600 955 1.10 2.75 

GFRP jacket 1.60 38700 832 2.10 3.90 
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Figure 4.20. Cyclic moment (kNm)-curvature (1/m) responses for different jacket types. 



In Figure 4.20, the cyclic behavior of the as-built pier and of the retrofitted 
pier without composite action is shown. The ultimate concrete compressive strains 
εcu  are computed by a single-iteration with the procedure described before. It can be 
seen that the retrofitted pier shows very stable hysteresis loops, until failure occurs at 
a curvature ductility factor of about 27. The CFRP layout results in a higher strength 
but less ductility than the GFRP layout, as expected. 

4.2.1 Assessment of the FRP-confined section model 

The section model shortly presented in the previous paragraph has been 
extensively verified against experimental tests on r.c. circular bridge piers, wrapped 
with FRP jackets. Here, two of those tests are presented: one by Seible et al. (1995c), 
the other by Saadatmanesh et al. (1996). Each test was performed on two specimens: 
one “as-built”, and the other “upgraded” with GFRP jackets. The geometrical and 
mechanical properties of the “as-built” specimens and of the composite materials 
used for upgrading are listed in Table 4.9. The pier height h  denotes the distance of 
the pier cap centroid (where the load was applied) from the top of the footing. 

 
Table 4.9. Geometrical and mechanical parameters of the “as-built” and “upgraded” specimens 

considered in the assessment of the FRP-confined section model. 

Geometrical and mechanical properties Seible et al. 1995c Saadatmanesh et al. 1997 

“As built” specimens 

Pier height h (m) 2.90 1.892 

Section diameter D (m) 0.608 0.305 

Reduced axial load n 0.046 0.176 

Unconfi ned concrete strength cof ′  (MPa) 44.3 34.5 

Steel yield strength syf  (MPa) 293 (bars), 403 (ties) 358 (bars), 301 (ties) 

Longitudinal reinforcement ratio slρ  0.025 0.0248 

Transverse reinforcement ratio stρ  0.003 0.0017 

Confinement pressure of hoops lf   (MPa) 0.484 0.256 

Composite materials of “upgraded” specimens 

Ultimate strength juf  (MPa) 793 298 *  

Ultimate strain juε  0.023 0.016 * 

Young’s Modulus jE  (GPa) 33.78 18.6 

Jacket thickness jt  (mm) 3.81 4.8 

Volumetric ratio of jacket jρ  0.0247 0.063 

Confinement pressure lf   (MPa) 9.8 9.4 * 

* This test was interrupted before the jacket failure. The values reported in the table refer to that stage. 

Ultimate values, not attained, were: juf = 532 MPa, juε = 0.029, and lf  = 16.7. 



 
In the above experimental studies, the response is given as lateral load vs. 

lateral displacement, while the fiber-section model yields the moment-curvature 
response at the pier base section. In order to compare the results in terms of 
displacement, the following relation is used to pass from curvature ductility χδ  to 

displacement ductility dδ : 

 ( ) 







−−δ+=δ χ L

l

L

l pp
d 5.01131  (19) 

where L represents the shear span to the plastic hinge. The plastic hinge length, pl , 
was directly measured in the tests by Saadatmanesh et al. (1997), while in the tests 
by Seible et al. (1995c), pl  was taken as (Priestley et al. 1996): 

   bsyp dfLl ⋅+= 022.008.0  (20) 

where syf  and bd  are the yield strength and bar diameter of the main column 
reinforcement, respectively. 

Based on the above considerations, numerical tests were carried out and 
compared to the experimental results (Figure 4.21). All piers were tested under 
increasing cyclic quasi-static lateral loads, while here only the envelopes are 
compared. In Table 4.10 the experimental and numerical values of the ultimate load 

uF  and of the maximum displacement ductility dδ  are listed, along with the error 
committed by the model. 
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Figure 4.21. Comparison of experimental (dots) and numerical (solid lines) results  
for the “as-built” and “upgraded” piers  

by Seible et al. (1995c) (left) and by Saadatmanesh et al. (1997) (right). 

 



Table 4.10. Comparison between experimental and numerical results of the “as-built” and the 

“upgraded” piers. Errors in the prediction of ultimate load uF  and ductility dδ . 

Seible et al. 1995c Saadatmanesh et al. 1997 Ultimate load uF  

and ductility dδ  Experiment Numerical  Error % Experiment Numerical  Error % 

uF  (kN) 532.50 532.69 0.0 64.00 63.14 -1.3 As-

built ava
dδ  3.10 3.88 25.2 4.00 3.93 -1.7 

uF  (kN) 566.40 593.66 4.8 84.00 80.82 -3.8 Upgrad

ed tar
dδ  12.14 12.79 5.3 6.50 6.76 4.0 

 
From these results, it can be concluded that the fiber section model with FRP 

confinement gives a satisfactory interpretation of the behavior of circular bridge piers 
confined with FRP jackets. 

4.2.2 Parametric study on FRP-confined sections 

A parametric study has been carried out with the program CYRUS (Monti et 
al. 1996), on the same section considered above, to examine the influence of 
different configurations of the FRP external reinforcement on relevant response 
quantities, such as: flexural strength, ductility and failure mechanism. 

The proposed confinement model was used to determine the response of the 
concrete fibers. The Classical Lamination Theory (CLT) was used to evaluate the 
equivalent stiffness and ultimate strain and strength of the jackets for both the 
longitudinal and the transverse directions. 

Two limit situations were studied, among other factors depending on the 
stiffness of the glue layer between jacket and pier: 
• full composite action between jacket and pier. This situation corresponds to 

perfect bond provided by the glue layer, 
• no composite action between jacket and pier. This situation corresponds to a glue 

layer that only provides transverse bond, so the jacket exerts only a confining 
action. 

It should be noted that, as opposed to the former case where an infinitely stiff 
glue layer in both directions is considered, the latter situation corresponds to having a 
glue layer that is infinitely stiff in the transverse direction and infinitely flexible in 
the longitudinal direction. This is of course a speculative case, that has the purpose of 
defining a lower bound for the composite action, since the former one defines an 
upper bound. The real response should be in between these two bounds. Further 
studies are necessary to include the effect of the stiffness of the glue layer in the 
model. However, for practical purposes, since it is recognized that the commercially 
available epoxy resins provide quasi-perfect bond in both directions, the former case 
can actually be considered as a satisfactory representation of a real behavior. 

The following assumptions were made: 



• The jacket exerts its action until the maximum theoretical strength and strain, 
• The compressive elastic moduli of FRP materials are equal to the tensile ones, 
• The failure criteria of the jackets are based on the ultimate strain theory. In the 

analyses without composite action, the jackets fail when the equivalent transverse 
ultimate strain is reached. In the analyses with full composite action, the jackets 
fail when either the ultimate transverse strain or the ultimate longitudinal 
compressive/tensile strain is reached, 

• The failure point of the pier was determined by first ply-failure of the jackets. 
That is, no subsequent stress redistribution among the remaining plies is 
considered, 

• The contribution from concrete tensile strength is ignored, as well as shear 
stresses on the section and possible bond-slip of the rebars. 

The parameters considered in this study were the jacket thickness and the 
fibers winding-angle. Confinement was provided by an external FRP jacket made of 
several plies with ± θ  fiber winding-angle. Four different jacket volumetric ratio 
( jρ = 0, 0.016, 0.024 and 0.032 mm) and seven winding angles (θ  = 0, 15, 30, 45, 
60 and 90°) were analyzed. For the jacket material carbonfiber/epoxy was selected.  

As regards the failure criteria, the envisaged mechanisms are in Table 4.11. 
 

Table 4.11. Failure mechanisms. 

Full composite action Without composite action 

1. Crushing of concrete 

(transverse tensile failure of jacket) 

1. Crushing of concrete 

(transverse tensile failure of jacket) 

2. Longitudinal tensile failure of jacket 2. Tensile failure of reinforcing steel 

3. Longitudinal compressive failure of jacket  
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Figure 4.22 Interaction diagrams with full composite action. 

Effect of winding angle θ variation for jρ = 0.016. 



00.020.040.060.080.10.120.14 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

Mcu/Mco

P/Pco

2

6

1
3

2

1

1: unconfined
2: q=   0

3: q= 15

4: q= 30
5: q= 45

6: q= 60

7: q= 75
8: q= 90

5

7

4

85
4

3

kcu [1/m]  
Figure 4.23. Interaction diagrams without composite action.  

Effect of winding angle θ variation for jρ = 0.016. 

The results are presented in terms of normalized interaction diagrams with 
respect to the unconfined properties: the ratio of confined to unconfined axial force 
( P Pco ) is plotted versus the ratio of confined to unconfined flexural strength 
( M Mcu co ) and versus the ratio of confined to unconfined ultimate curvature 
(κ κcu co ). The unconfined pier properties are: P f Aco co gr= =  61,850 kN, 
Mco = 10,454 kN and κco = 0.0194 1/m. 

Figure 4.22 and Figure 4.23 show the axial load/flexural strength and axial 
load/ultimate curvature interaction diagrams for jρ = 0.016 and various winding-
angles, with and without composite action. In Figure 4.22, it is noticed that under 
pure bending ( P Pco =0), an enhancement of the flexural strength is obtained for all 
winding angles, with a maximum of almost four times when the fiber winding angle 
is 90°. Also for as regards the ultimate curvature, there is an increase which is more 
significant for higher axial load (for example, for P Pco =0.5, the ultimate curvature 
is increased by a factor that varies from 3 to 4). On the other hand, looking at the 
case of pure axial load, it is observed that the sectional axial strength increases by 
reducing the winding angle: with θ =0° the increase is more than three times. In the 
cases where both the axial load and the bending moment are acting on the section, 
the shape of the interaction diagrams changes according to the dominant failure 
mechanism. In the range of low axial loads (say, P Pco <0.75), which is more 
interesting from the practical standpoint, it should be observed that for the cases with 
θ =75°, 90°, the flexural strength decreases for increasing axial load, as opposed to 
the other cases where the behavior is like one would expect. This is essentially due to 
the fact that collapse of the section occurs due to longitudinal tensile failure of the 
jacket, before the reinforcing bars have completely exerted their ductility. It can be 
concluded, therefore, that jackets under full composite action are better suited for 
flexural strength increase instead of ductility enhancement. 
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Figure 4.24. Interaction diagrams with full composite action. 

Effect of jρ = 0 (1), 0.016 (2), 0.024 (3), 0.032 (4) for winding angle of 45°. 

In Figure 4.23, under pure bending ( P Pco =0), there is no significant increase 
of flexural strength (at most 1.5 times the unconfined one), but the available ductility 
sensibly increases as the winding angle decreases (up to 5.5 times when θ =0°, 15°, 
30°), attaining much higher values than the previous case where full composite 
action is considered. Note that in this case the shape of the interaction diagrams does 
not change with the wrapping configuration: they are simply scaled up. This reflects 
the fact that the failure mechanism is always due to concrete crushing, as opposed to 
the previous case where the jacket can also fail due to longitudinal strain. As 
expected, it is observed that significant improvements are obtained only for winding 
angles less than 45°. In this case, the conclusive remarks is opposite than that of the 
previous case: jackets without composite action are better suited for ductility 
enhancement instead of flexural strength increase. As already observed, the actual 
behavior of a jacketed section is in between the two cases analyzed above. 

In Figure 4.24 the effect of the jacket thickness is studied for a winding-angle 
of 45°, with full composite action. It is seen that significant ductility increase is 
obtained above values of P Pco =0.2, while for lower values, the ductility is 
essentially the same as that of the unconfined section. It is important to notice that 



for low values of the axial load, any increase in thickness brings no significant 
improvement to the response. 

From the analyses performed, the following conclusions can be drawn: 
• The failure mechanism is the most important concern in the evaluation of flexural 

strength and ductility. The observed failure mechanism is strongly dependent on 
jacket thickness, winding angle and axial load level. 

• Composite action does not significantly improve the pure axial capacity; it can 
even impart a decrease, due to the relative poor compressive behavior of the 
jackets. 

• Composite action improves flexural strength for the larger (>45°) winding-
angles. The source of increase is the direct load-carrying capacity of the jacket, 
rather than its confining action. This further explains why larger winding-angles 
result in higher flexural capacity. For (very) high levels of axial load and small 
winding angles, flexural strength is decreased. 

• Composite action strongly decreases the available ductility for smaller (<45°) 
winding-angles, for the larger winding-angles and high axial load levels 
( coPP >1.0) the decrease is less apparent or even can revert to an increase. 

• As the thickness of the jacket increases, the axial and flexural capacity and the 
available ductility all increase, but the rate of increase depends on axial load and 
the presence or absence of composite action. 

• The winding-angle has no significant impact on pure flexural capacity of the pier 
without composite action, but a large decrease in pure ductility is occurring for 
increasing winding-angles. With composite action, an increased winding-angle 
strongly increases both pure flexural strength and pure ductility. 

4.3 Design criteria for upgrading through FRP wrapping 

In this section, a design equation, which was the final objective of the above 
developments, is proposed to determine the optimal thickness of FRP jackets, for 
enhancing the ductility of existing reinforced concrete bridge piers, having circular 
cross-section. The design procedure stems from the definition of an upgrading index, 
given as the ratio of the target-to-available ductility at the pier base section, to be 
attained through FRP jacketing. The available ductility is that identified through the 
usual assessment procedures on the r.c. member to upgrade, while the target ductility 
is evaluated based on the expected actions on the bridge. The upgrading index is 
initially defined in general terms and is subsequently extended to the case of piers 
built in seismic regions. It results in a simple expression in terms of easily 
computable quantities, such as the ultimate strain and the peak strength of concrete, 
before and after upgrading. A parametric study on old-code-designed bridge piers 
sections, upgraded with either glass or carbon fiber jackets, is performed, based on a 
fiber-section model, equipped with a newly developed FRP-confined concrete model. 
This study shows that the index, despite its simplicity, yields excellent predictions of 
the ductility increase obtained through FRP wrapping, and it is therefore used to 
develop a design equation. Such equation allows to design the optimal thickness of 



FRP jackets in terms of: the desired upgrading index, the mechanical characteristics 
of the selected composite material, and the quantities defining the initial state of the 
pier section. The design procedure has been applied to available experimental tests of 
a scaled bridge pier wrapped with FRP and tested to failure, and it has demonstrated 
to be very effective. 

4.3.1 Upgrading index of FRP-wrapped pier sections 

The final objective of the design procedure here proposed is to find an 
analytical correspondence between unknown design parameters (e.g., jacket 
thickness and FRP material type) and a measure of the intervention effectiveness. In 
general, the upgrading of structures located in seismic areas aims at improving the 
performance of the resisting elements by modifying their strength and/or ductility 
and/or stiffness. This latter is more difficult to obtain (and in most cases it is not an 
objective of the intervention) when using jackets and wrappings, so the member 
stiffness can be assumed as constant, before and after the intervention.  

In most cases, upgrading interventions aim at increasing the performance of 
certain critical sections along the member. For those simple cases where the pier is of 
the single-bent type, the intervention is usually localized at the pier base, so that its 
effectiveness can be measured, without loss of generality, with reference to some 
critical section. A section upgrading index secI  is therefore introduced, which 

measures the increase from the (available) ultimate moment avaM  and curvature 
ductility ava

χδ  of the “as built” section, to the (target) ultimate moment tarM  and 

curvature ductility tar
χδ , to be obtained through the upgrading, and defined as 

follows:  

 avaava

tartar

M
M

I
χ

χ

δ
δ

=sec  (21) 

The quantities at the denominator should be determined through a preliminary 
assessment procedure, while those at the numerator are consequent to the evaluation 
of the expected load actions. When the index is lower than 1, no upgrading is 
necessary. Values of the index greater than 1 imply the necessity of upgrading. This 
latter situation can arise either from a reduction of the denominator (damaged 
sections) or from an increase of the numerator (increase of the action) with respect to 
the original design conditions. 

The index (21) can be simplified, if one considers the most common case of 
unidirectional fibers wrapped (sometimes automatically) at 90° with respect to the 
column axis. Such upgrading interventions always result in relevant inc reases of 
section ductility, while only determining limited increases in flexural strength. This 
also emerges from the parametric analyses that will be shown in the following 
section, where, for the piers examined, an average strength increase of 10% with a 
maximum of 20% was observed. As a consequence, for design purposes, the 
upgrading index (21) can be simplified as: 



 ava

tar

I
χ

χ

δ
δ

=sec  (22) 

This expression allows to determine the value of the upgrading index, once 
the available ductility has been assessed and when the target ductility, that is, the 
most probable required ductility, has been prognosticated. It should be recognized 
that: 

 
( )

( )conditionspier  assessed

propertiesjacket  FRP
sec ava

tar

I
χ

χ

δ

δ
=  (23) 

that is, the available ductility depends on both, the pier geometrical and mechanical 
properties, and the axial load, while the target ductility depends on the properties and 
the thickness of the FRP jacket to be designed. Thus, it would be expedient to 
express the above equation in such a way that the sought FRP jacket properties can 
be easily determined, once the available ductility has been assessed and a value of 
the upgrading index has been established. This is exactly the objective of this work, 
which will be pursued in the following sections. 

4.3.2 Mechanical Model of the Upgrading Index 

A simple mechanical model of a circular r.c. pier section is here adopted, with 
the aim of arriving at an expression of the upgrading index (22) in terms of basic 
geometrical and mechanical quantities. 
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Figure 4.25. Simplified model of the section.  

With reference to Figure 4.25, it is observed that the section upgrading index 
(22) can be expressed as: 

 
( )
( ) ava

yu

tar
yuI

χχ

χχ
=sec  (24) 

where the, either target or available, sectional ductility χδ  is expressed as the 

ratio of the ultimate curvature uχ  to the yield one yχ . 



From several numerical analyses performed and presented in the following 
section, it has been observed that the yield curvature is not significantly altered by 
the presence of the FRP wrapping, therefore it can be assumed that ava

y
tar
y χ≅χ , and 

the index simplifies to: 

 ava
u

tar
uI

χ
χ

=sec  (25) 

Using the definition of curvature, under the assumption of section planarity, 
the above equation can be written as: 

 ava
cu

ava

tar
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cu y

y
I

ε
ε

=sec  (26) 

where cuε  is the ultimate concrete strain and y is the neutral axis position, 
both considered in the initial (ava) and the final (tar) situation.  

ava
cuε  in (26) is the initially available concrete ultimate strain when only the 

steel hoops confinement is present, and it can be computed through a widely 
accepted experimentally-derived formula (Seible et al. 1995b): 
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004.0  (27) 

where ( )stststst dsA4=ρ  is the volumetric ratio of steel hoops (spiral) having area 

stA , spacing (pitch) sts , and diameter std ; and syf , suε  = steel yield strength and 
ultimate strain (usually 0.12), respectively. The confined concrete peak strength 

cccocc fff ′⋅′=′  is the product of the unconfined concrete strength cof ′  and the 

normalized confined strength ccf ′  (Mander et al. 1988): 

 254.1294.71254.2 −−+=′ llcc fff  (28) 

where coll fff ′=  = normalized confining pressure, with: 

 systel fkf ρ=
2
1

 (29) 

where ke  = tie-by-tie arching-effect coefficient (usually 0.8).  
tar
cuε  in (26) is the target concrete ultimate strain to be attained through FRP 

confinement, and it can be computed through a recently proposed formula (Spoelstra 
and Monti 1999): 

 ( )ljuccocu fE ε+ε=ε 25.12  (30) 



where coε  = unconfined concrete strain at peak stress (usually, 002.0=εco ), 

cocc fEE ′=  = concrete normalized initial modulus, juε  = FRP jacket ultimate 
strain. In this case, the confining pressure fl  can be evaluated analogously to (10) as: 

 f f El j ju j j ju= =
1
2

1
2

ρ ρ ε  (31) 

where jjj dt4=ρ  is the volumetric confinement reinforcement ratio of an FRP 

jacket having thickness jt  and diameter jd . The mechanical characteristics of the 

FRP jacket are: the ultimate strength juf , the elastic modulus jE  and the ultimate 

strain juε . On passing, note that ke = 1 for jackets. 

Having determined the two strains in (26), the two remaining quantities: tary  

and avay  need be found. To this purpose, consider Figure 4.25. The neutral axis 
position y can be found through equilibrium considerations, writing: 

 ( ) ( ) ( ) cogrssyssyccc fAnyAfyAfyAf ′=−+′α +−  (32) 

where α  = equivalent stress-block coefficient, )( yAc  = compressed area of concrete, 

)(yAs
−  = area of steel under compression, )( yAs

+  = area of steel under tension, n = 
reduced axial load, grA  = gross area of concrete. Note that both steel areas have been 

attributed the yield strength syf : this is not strictly exact, in fact, the steel bars close 
to the neutral axis are still elastic; however, their contribution approximately cancels 
out in the equilibrium and does not affect the correctness of the formula. It is 
important to notice that the areas of both concrete and steel depend on y. In general, 
equation (32) can be written as: 

 ( )( ) ( )( ) ( )( ) cogrsssysssycgrcc fAnyAfyAfyAf ′=⋅−⋅+⋅′α +− FFF  (33) 

where sA  = total steel area. The F’s are functions giving the variation of the 
respective areas in terms of the neutral axis position (here normalized with respect to 
the section diameter d : dyy = ; also note that the internally confined diameter is 
taken approximately equal to the external diameter). Note that it must be: 

( ) ( )yy ss
−+ −= F1F , therefore, calling ss FF ≡− , and dividing both members by cogr fA ′  

and rearranging, one obtains: 

 ( ) ( ) sssccc nyyf µ+=µ+′α F2F  (34) 

where ccf ′  = normalized confined concrete strength defined in (9), and 
( ) ( )cogrsyss fAfA ′=µ  = mechanical ratio of longitudinal reinforcement.  

The exact expressions for the F functions are: 
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which clearly hamper the search for a closed-form solution of y . Thus, in order to 
facilitate the determination of y  in (34), an approximation is introduced, whose 
consequences will be examined later. The above F functions are written as the 
product of a linear quantity times the corresponding error function E: 
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 (36) 

Substituting the above functions into (34), the following approximate 
equilibrium equation is obtained: 

 ( ) ( ) sssccc nyyyyf µ+≈⋅µ+⋅′α E2E  (37) 
from which the sought value y  is found as: 
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The final step requires substituting (38) into (26) and, by considering the 
initial (ava) and the final (tar) conditions, the expression for the upgrading index is 
obtained as: 
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where it has been obviously considered that tar
s

ava
ss µ≡µ=µ . Note that, in general, 

although the FRP-confined concrete diagram has a different shape from the steel-
confined one (see, for ex., Spoelstra and Monti 1999), it was ascertained that 

tarava α≈α , and therefore 8.0=α=α=α tarava  is here assumed without loss of 
accuracy. Moreover, if one also considers the probable case of no increase in axial 
load ( tarava nn = ), the index simplifies to: 
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where tar
cuε  is obtained through (30), while ava

cuε  through (27); tar
ccf ′  is obtained 

through (9) with lf  from (13), while ava
ccf ′  is obtained through (9) with lf  from 

(10). The treatment of the error functions E will be dealt with in the following 
section. 



4.3.3 Considerations over the error functions E 

The upgrading index in (40) embodies the approximations introduced with 
equations (36). It should be clear that the choice of the error functions E is a key 
point in the development  of an explicit expression for secI : in fact, simple 
expressions of the E’s would lead to a simpler upgrading index, but possibly to 
unacceptable errors, whereas more accurate expressions of the E’s would possibly 
improve the index accuracy and reliability, but probably at the cost of a higher 
complexity of its expression.  
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Figure 4.26. Functions cF  (left) and sF  (right) in (36) resulting from two approximation levels: 

linear (41) and nonlinear (42), compared with the exact expressions (35). 

Two possible choices of the error functions have been considered: 

 ( ) ( ) 1E1E 11 == yy sc  (41) 

 ( ) ( )
y

yyy sc
2
1

E2E 22 ==  (42) 

where equations (41) imply that a linear approximation of (36) is accepted, while 
equations (42) imply a more refined (nonlinear) approximation. Figure 4.26 shows 
the F functions of (36), as resulting from the adoption of the error functions above, 
compared with the exact expressions of (35). Note that equations (42) are valid for 

5.00 ≤≤ y , which however brackets the neutral axis position range at collapse. 
Thus, the index results, for the case of linear approximation (41), in: 
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while for the case of nonlinear approximation (42), in: 



 
ava

s
avaava

cc

tar
s

tartar
cc

ava
cu

tar
cu

yyf

yyf
I

222

222
2sec

µ+⋅′α

µ+⋅′α
⋅

ε
ε

=  (44) 

In expression (44), it has been verified that for 5.01.0 ≤≤ y  a good 
approximation can be obtained by simply setting: 

 ccscc fyyf ′≈µ+⋅′α 222  (45) 
as it can be seen in Figure 4.27, where as an example, the error committed in the 
approximation for the case 1.1=′ccf  is reported. The index results then in the simple 
expression: 
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The effects of the approximation introduced with (45) on the upgrading index will be 
examined in the next section. 
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Figure 4.27. Error in the approximation of (45). 

The scope of the next section is to verify the accuracy of the upgrading 
indices (43) and (44). To this aim, a parametric study has been carried out where the 
values of the upgrading index obtained through both (43) and (44) are compared to 
the values obtained through numerical analyses performed with a fiber-section 
model, presented next, which stepwise accounts for the confinement effect of FRP 
wrapping in the concrete core (Monti and Spoelstra 1997a, 1997b).  

4.3.4 Comparison between analytical and numerical indices 

The effects of the confining action of both GFRP and CFRP wrapping on the 
performance of bridge pier sections have been studied on a set of selected full 
circular sections, deemed to be representative of a class of bridge piers built in 
Europe in the 60’s and 70’s. Using the fiber model presented above, the pier sections 



are first assessed (their available ductility ava
χδ  is computed) under “as-built” 

conditions, then they are upgraded with different FRP jackets, and then assessed 
again (the obtained tar

χδ  ductility is computed). For each pier examined, the 
corresponding (numerically evaluated) upgrading index is compared with the 
(analytically computed) upgrading indices of (43) and (44). 

In the analyses, the conventional yield point is found a posteriori, as the 
intersection point between the line starting from the origin and passing through the 
first yield of a bar in tension, and the line with zero slope passing at 85% of the 
maximum moment (which coincides with the ultimate one, if no softening takes 
place). The conventional collapse point corresponds to the failure of the uppermost 
confined concrete fiber, whose ultimate strain is determined with (27) under as-built 
conditions and with (30) under upgraded conditions. 

 

Table 4.12. Parameters considered in the parametric study. 

Parameter Range 

“As built” section 

Diameter of section D (m) 1.60 

Reduced axial load n 0.04, 0.08, 0.12 

Concrete strength cof ′  (MPa) 30, 35, 40 

Steel strength syf  (MPa) 300, 400, 500 

Longitudinal reinforcement ratio slρ  (%) 0.50, 0.75, 1.00  

Transverse reinforcement ratio stρ  (%) 0.05, 0.10, 0.15 

Composite materials for upgrading 
GFRP - Jacket volumetric ratio jρ  (%) 0.25, 0.50, 0.75 

GFRP - Tensile strength juf  (MPa) 800, 1000, 1400 

GFRP - Young’s modulus jE  (GPa) 35, 45, 65 

CFRP - Jacket volumetric ratio jρ  (%) 0.25, 0.50, 0.75 

CFRP - Tensile strength juf  (MPa) 1200, 1500, 1700  

CFRP - Young’s modulus jE  (GPa) 120, 140, 150  

 
Table 4.12 lists the parameters considered in the study, along with the 

considered range of variation. The adopted values and also the construction material 
strengths are deemed to represent those used in old construction standards in the 60’s 
and 70’s. The piers diameter is kept constant throughout the analyses, thus neglecting 
possible scale effects, which however are not deemed to be particularly significant 
for the ‘typical’ range of diameters (1.0 to 3.0 m) of bridge piers. This amounts to 



assuming that the confining effect only depends on the jacket volumetric ratio jρ . 
Here, unidirectional fibers orthogonal to the pier axis have been considered. 

The results obtained in the parametric studies are presented in Figure 4.28, 
where the indices numerically obtained from the fiber-section model are first 
compared to the indices analytically obtained with equation (43), for both upgrading 
cases with GFRP and CFRP jackets. Considering that the solid line represents the 
perfect coincidence between the analytical and the numerical index, it is seen that 
most of the dots representing the numerical outcomes lay very close to it, thus 
corroborating the correctness of the formulation developed for the analytical index.  

However, it is noticed that for high upgrading values, say, in excess of 4, the 
analytical index 1secI  tends to become under-conservative and to overestimate the 
effectiveness of the upgrading. This can be imputed to the approximation introduced 
with the error function (41): as shown in Figure 4.26, the error is maximum when 

2.01.0 ≤≤ y , that is, where the neutral axis is more likely located at high ductility 
levels, which occur for high upgrading values. On the other hand, for values of the 
index 1secI  comprised between 2 and 4, the neutral axis is located in the range where 
the approximation errors are lower, and the index, even though obtained with a crude 
linearization, predicts the upgrading with sufficient accuracy. 

The results obtained with the index 2secI  in (46) are presented in Figure 4.29, 
where it can be seen that its performance is extremely improved with respect to the 
previous index, notwithstanding the approximation introduced with (45). Thus, it can 
be concluded that the upgrading index (46) can be reliably used to optimally design 
FRP jackets, for both light and heavy upgrading interventions on r.c. circular 
sections. It is interesting to note that higher upgrade levels are attained with GFRP 
jackets, rather than with CFRP jackets, thanks to the higher flexibility of GFRP that 
allows concrete to reach higher ultimate strains (see also Spoelstra and Monti 1999). 
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Figure 4.28. Results of the parametric study. Comparison between the indices obtained numerically 
from the fiber-section model and the index 1secI  of equation (43). 
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Figure 4.29. Results of the parametric study. Comparison between the indices obtained numerically 

from the fiber-section model and the index 2secI  of equation (46). 

4.3.5 Use of the upgrading index for design of FRP jackets 

With equation (46), the upgrading index is now cast as initially intended with 
equation (23), that is, it incorporates target (TAR) quantities that can be expressed as 
the product of available (AVA) quantities, times the desired upgrading index (I), as 
follows: 

 ( ) AVATAR2sec ⋅=→′ε⋅=′ε IfIf ava
cc

ava
cu

tar
cc

tar
cu  (47) 

The unknown quantity TAR is a function, through tar
cuε  and tar

ccf ′ , of the 

normalized confining pressure jujl ff ρ= 2
1 , of the jacket ultimate strain juε , and of 

the concrete normalized initial modulus cE . Actually, the dependence on this latter 
has been observed to be very weak, so that: 

 ( ) AVA,,TAR ⋅=ερ If jujuj  (48) 
where the terms in parenthesis represent the sought quantities of the design 
procedure, in the sense that, once the jacket material (i.e., juf  and juε ) has been 

selected, one can determine the quantity jρ . Unfortunately, the complexity of the 
function TAR prevents to explicitly express these quantities in terms of the known 
quantity AVA⋅I . Therefore, a more treatable expression for ( )jujuj f ερ ,,TAR  has 
been sought through a multivariate regression analysis, whose results are condensed 
in Figure 4.30, where the solid lines represent the function: 

 ( ) ( )2
1

2
3

5.2,,TAR juljujuj ff ε=ερ  (49) 
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Figure 4.30. Function TAR: exact (dashed lines) vs. regression (solid lines). 

 
Thus, equation (48) can be now expressed as: 

 ( ) ( ) ava
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from which the expression that defines the jacket volumetric ratio as function of 
known quantities (I, ava

ccf ′  and ava
cuε ) and selected quantities ( juf  and juε ), is finally 

found: 
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where ava
ccf ′  is obtained through (9) with lf  from (10) and ava

cuε  is obtained from 
(27). 

It should be noticed that the design equation (51) is best suited for cases 
having TAR larger than 0.01, because of the steep gradient of the function below that 
point (as seen from the concentration of lines in Figure 4.30). Note also that, for FRP 
jackets having large ultimate strain juε  (say, larger than 0.02), the design equation 
tends to underestimate the jacket effectiveness for values of the function TAR larger 
than 0.05. It should however be remarked that both ranges of values are rather 
unlikely to occur. 

The design procedure for designing an FRP jacket can be summarized as 
follows: 
1. Assess (through survey) the quantities: cof ′ , n, sµ  and stµ , 

2. Compute ava
ccf ′  from (9) with lf  from (10), and ava

cuε  from (27), 



3. Assess the available curvature ductility ava
χδ  at the pier base section, through a 

section model, using cof ′ , n, sµ  and stµ , 

4. Evaluate the target one tar
χδ , based on expected loads (for the case of seismic 

action, see next section), 
5. Compute the upgrading index avatarII χχ δδ== sec , verify that AVA⋅I > 0.01, 

6. Select the material for the FRP jacketing ( juf  and juε ), 
7. Determine the FRP jacket thickness jt  from (51) and 4jjj dt ρ= .  

4.3.6 Design Example 

The design procedure outlined in the previous paragraph is here applied to the 
r.c. circular bridge pier by Seible et al. (1995c), presented previously, and then the 
value found for the jacket thickness is compared to the actual value actually adopted 
in the test. The test by Saadatmanesh et al. (1997) was discarded because the 
computed value of AVA⋅I = 0.011 was considered too close to the lower limit of 
0.01 under which the design equation is considered to fail. 

Pier by Seible et al. (1995c): 
1. cof ′ = 44.3 MPa, n = 0.046, 165.03.44293025.0 =⋅=µ s  and 

3.44403003.0 ⋅=µ st = 0.027 (used in the test), 

2. 074.1=′ava
ccf  from (9) with MPa 48.0403003.08.05.0 =⋅⋅⋅=lf , and ava

cuε  = 
0.008 from (27). 

3. ava
χδ  = 8.1 at the pier base section (computed with (54) from the experimental 

displacement ductility ava
dδ  in Table 4.10, with pl = 0.3 m from (20)), 

4. tar
χδ  = 38.8 (computed from tar

dδ  as above), 

5. avatarII χχ δδ== sec  = 4.8, AVA⋅I = 0.04 > 0.01, 

6. juf  = 793/44.3 = 17.9 and juε  = 0.023 (used in the test), 

7. 022.0=ρ j  and 3.3022.060825.0 =⋅⋅=jt  mm. 
Note the acceptable difference with respect to the values actually used in the 

test: 0247.0=ρ j  and jt  = 3.81 mm. 

4.3.7 Ductility upgrading of piers in seismic regions 

When designing upgrading interventions on structures in seismic areas, one 
deals with spectral ordinates that measure the seismic action felt by the structure 
(usually, in terms of forces). In a ductility-based design, it is known that the spectral 
ordinates used for evaluating the forces acting on a structure are related to the 
amount of available ductility. In this view, it is all too natural to define a pier 



upgrading index pierI , analogous to that already defined in terms of ductility, and to 
relate it to the spectral ordinates corresponding to different ductility values. 

In order to do this, let us consider an elastic-plastic oscillator. The non-
collapse requirement is expressed as: 
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The above formula states that a SDOF system having mass m, elastic period 
T, yield force yF , under a response acceleration ( ) gaTR  (with R(T) = response 

spectrum and ga  = peak ground acceleration) is required a target displacement 

ductility tar
dδ , and it survives if this is not greater than the available ductility ava

dδ .  
The above inequality can be also expressed in terms of the pier upgrading 

index pierI  as: 
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For well-designed or sound structures, the above equation yields a results 
lower than 1, then no upgrading is necessary. For insufficiently-designed or damaged 
structures, the above equation yields an upgrading index pierI  greater than 1. This 
might occur, in practical cases, if: a) the mass m on top of the pier increases (e.g., 
enlargement of the deck to accommodate more lanes, or replacement of traffic 
barriers with heavier ones); b) the response spectrum (amplification factor) R(T) 
ordinate increases (e.g., change of the design spectrum in the seismic code); c) the 
peak ground acceleration ga  increases (e.g., change in the conventional seismic 

classification); d) the pier strength ava
yF  decreases because of damage; e) the 

available ductility ava
dδ  decreases because of damage. This two latter values can be 

found through usual assessment procedures. 
From the element displacement ductility demand tar

dδ , the section curvature 

ductility demand tar
χδ  should be recovered. For ex., for the simplest case of single-

bent pier, from (19) one gets: 
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  Thus, the value of the section upgrading index secI  which satisfies the target 
condition can be found: 
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Given the index value as a measure of upgrading requirement of the section, 
is then possible to design the upgrading jacket, through the procedure outlined in the 
previous section. 

4.4 Conclusions  

The use of fiber reinforced polymers (FRP) materials is gaining widespread 
acceptance in the engineering community, even though in Europe few applications 
have been developed, also due to the absence of pertinent regulations in the building 
codes. This is mainly related to the fact that necessary studies are currently under 
way and aim at clarifying the properties of these innovative materials used in 
conjunction with reinforced concrete structures. 

One of the aspects that deserves a deeper insight is the ductility enhancement 
that is obtainable on bridge piers by wrapping them with FRP sheetings. This is 
exactly the goal that has been pursued in the studies presented above: the 
development of new, simple and rational design rules for designing the optimal 
thickness of FRP jackets in plastic hinge regions of existing reinforced concrete 
bridge piers, having circular cross-section. The procedure is deemed for the design of 
interventions in seismic regions, but it is initially cast in a general framework and 
subsequently specified for the seismic case. To this purpose, an upgrading index has 
been defined, which relates the available ductility at the pier base section to the 
desired level of ductility to attain through FRP jacketing. The available ductility is 
identified through the usual assessment procedures, while the target ductility is 
evaluated based on the expected actions on the bridge. It is clear that a ductility 
upgrade is a task essentially pursued in cases of seismic strengthening or retrofitting, 
nonetheless the procedure is developed for general purposes and the application to 
the seismic case is presented as an extension. Once the index has been defined, an 
expression suitable for design was sought, which could express ductility as function 
of easily computable quantities.  

The ability of the proposed index to represent the actual ductility increase due 
to upgrading with FRP jackets was tested through a parametric study on bridge piers 
sections, deemed to represent the result of an obsolete design procedure, which are 
then upgraded with either glass or carbon fiber jackets.  

In order to run the numerical analyses to assess the accuracy of the design 
equation, a uniaxial concrete model has been developed (see paragraph 4.1), which 
explicitly accounts for the continuous interaction with the confining device. The 
model can be used for concrete confined with either steel or FRP and it is meant to 
be included in fiber-type finite element models for the analysis of FRP-strengthened 
reinforced concrete structures.  

This model relies on an iterative procedure, through which the stress-strain 
curve is obtained as one that crosses a family of stress-strain curves at constant 
confinement pressure, where at each point the confinement pressure is equal to that 



induced by the FRP jacket subjected to the corresponding lateral expansion. In order 
to evaluate the lateral strain at a given level of axial strain, a damage model proposed 
by Pantazopoulou and Mills (1995) has been adapted to the case of varying 
confinement pressure. This model is strongly dependent on the value attributed to the 
coefficient β , of which a new equation for its determination has been proposed. 

For FRP-confined concrete, the resulting stress-strain curve show a gradually 
increasing behavior, until the jacket fails. The simulated compressive response of 
normal strength concrete confined with FRP has been compared to available tests on 
wrapped cylinders, showing excellent agreement both in terms of stress-strain 
behavior and ultimate state. Also, the lateral strain, volume strain, and dilation rate 
curves are satisfactorily modeled.  

Through the developed model, predictive equations have been derived to 
determine the ultimate compressive strength and strain of FRP-confined concrete, 
that are useful in the analysis of the response of r.c. sections strengthened with FRP 
wrappings. In fact, the proposed confinement model proved to be very effective in 
moment-curvature analyses through fiber-section to predict the increase in strength 
and ductility of concrete confined with fiber-reinforced plastics, in a more realistic 
manner than the commonly used confinement models (see paragraph 4.2). 

Going back to the design equation developed in paragraph 4.3, such fiber 
section model was used in the analyses. The numerical indices obtained with the 
parametrized fiber section models were then compared with two different analytical 
indices, each one corresponding to a different approximation introduced in its 
formulation. One index has been derived by linearizing the law of variation of the 
compressed areas of concrete and steel and the steel tensile area, while the other uses 
nonlinear approximations. It has been shown that both analytical indices yields 
excellent predictions of the ductility increase obtained through FRP wrapping, but 
the second index should be preferred, both, for its better accuracy even at higher 
index values, and because of its simplicity, since it requires the knowledge of only 
the ultimate strain and the peak strength of concrete. A last step was to split the index 
into known (available, from assessment) and unknown (target, to be designed) 
quantities and define these latter in terms of the mechanical and geometrical 
characteristics of the jacket to be designed.  

Eventually, a design equation is obtained that allows to determine the 
thickness of the FRP jacket in terms of: the upgrading index, which is the objective 
of the design, the selected mechanical characteristics of the jacket, and the quantities 
defining the initial state of the section. An example application of the design 
procedure to a scaled bridge pier, wrapped with FRP and tested to failure, has 
demonstrated the accuracy of this equation for designing FRP jackets for the upgrade 
of circular r.c. sections. 
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