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1 INTRODUCTION

The last intense seismic events occurred in 1999 in Turkey, Greece and
Taiwan have had the important consequence of confirming, worldwide, the need of
developing new and more comprehensive concepts for assessing the state of existing
bridges and for designing safer and easy-to-implement strengthening techniques.
Nowadays, no other research topic has so direct an influence over practice, as
confirmed by the large amount of retrofit work on bridges, taking place with more
and more accelerating pace all over the developed seismic countries of the world.

The need for strengthening the existing bridges stems from the consideration
that most of the bridges built in the past in seismic zones according to now-obsol ete
codes are inadequate to meet the more stringent requirements imposed in the new
generation of codes, for as regards both strength and ductility. The deficiencies that
make existing bridges, even those built until the very last few years, vulnerable to
seismic action all have a single common cause: the conventionality of the seismic
design approach used in the former codes (and still in some of the present ones).

It is widely known that those codes had the limitations of emphasizing the
strength aspects while only making implicit reference to the concept of ductility and,
which is more important, gave no provisions to ensure stability of the response in the
post-elastic range.

As a consequence, existing bridge piers built according to those codes — as
observed either from original project drawings or through in-situ inspections after
destructive seismic events — rather frequently, at least in Italy, are equipped with
adequate amounts of longitudinal reinforcement (thus complying with the flexural
strength requirements), while systematically showing insufficient transverse
reinforcements (thus lacking the confinement necessary for ensuring a ductile
response).

Another common source of inadequacy of existing bridge piers arises from
the nowadays frequent re-classifications of seismic zones (for ex., in Itay, after that
of 1981, a new one is under development, based on more accurate hazard studies); in
such cases, most bridge piers designed according to a previous seismic zonation do
not satisfy the verifications with the new increased seismic actions.

The seismicity of Italy is certainly less than that, for ex., of California or in
parts of Japan, but events of Magnitude of the order of 6.5 are rather frequent (the
last M=6.5 event did occur in Southern Italy in 1981, and the previous M=6.5 in
Northern Italy in 1976), and events of magnitude larger than 7 have also occurred, at
a rate of about twice every century starting from the year 1000. Although the
seismicity of Italy is well known to geophysicists, and plenty of hazard studies have
been produced and are available, no officially approved hazard map exists, while the
zoning of the country for the purposes of seismic design reflects more the
information from (recent) past events than the input from geophysical studies.
Additionally, the seismic zones have been substantially enlarged after the 70’s, i.e.,
after the completion of the highway system, so that in the end a random relation
exists between the location of the bridges, the actual hazard at the sites, the present



definition of the seismic zones, and the way the bridges have been designed
(earthquake resistant or not).

Based on the above considerations, it should be clear how the necessity of
accurately assessing the state of existing bridges and of retrofitting them has become
a deeply felt issue. Luckily enough, the structural types adopted internationally for
urban viaducts and highway bridges are mostly similar; this situation has been of
help in arriving at a unified view on the appropriate diagnosis methods and on the
remedial measures to be adopted, be these necessary for enhancing strength and/or
ductility of the piers, for eliminating excessive mobility of the deck, for ensuring safe
transmission of the forces through bearings, etc. This amounts to saying that in
seismic retrofit of kridges the focus is not so much on theoretical developments,
athough technological advances are needed, for ex. on materials and techniques for
strengthening, asit is on an efficient management of the resources available.

This report tries to cover all of the above aspects, with due consideration to
Issues concerning bridges, regarded both as single structures and as parts of a whole
and more complex system, such as a highway system. The motivation for the studies
contained in this report derives from an endeavor promoted by the GNDT, Gruppo
Nazionale per la Difesa dai Terremoti (National Group for the Defense Against
Earthquakes) that has had many of the Italian Research Centers and Universities
involved in a common effort to provide answers and clarify most of those aspects of
the seismic behavior of structures, that are still indefinite and not so thoroughly
studied. In particular, this report covers the studies conducted at the University of
Rome La Sapienza in the last years, where a continuous effort has been devoted to
the investigation of different issues regarding the seismic response of bridges, both
conventional and isolated. All the work carried out can be grouped under three main
topics, and this is actually how this report is articul ated:

Chapter 2 — Bridge systems
Chapter 3 — Important phenomena affecting the bridge response
Chapter 4 — Upgrading of bridge piers with FRP

Chapter 2 (Bridge systems, page 9, based on the research work by Giannini,
R., Nuti, C., and Pinto, P.E.) is essentially of methodological nature, where object of
the study is a significant part of the Italian highway network, whose vulnerable
elements are supposed to be the bridges. The study, dealt within a probabilistic
framework, involves the complete knowledge of the state of all bridges and the
verification whether they are adequate for ensuring the network functioning after an
earthquake. This is defined as continued linking between any two nodes of the
network. The final objective of such study is that of singling out the most critical
bridges for the network functioning, as well as quantifying the degree of upgrading
required for reaching the target reliability. The study presented in this chapter is
developed in four stages: firstly, the present seismic hazard over the Italian highway
network has been defined through an accurate hazard study; secondly, a well-



structured database that collects the description of al bridges in the Italian highway
network has been analyzed, from which fragility curves for al bridges have been
developed in order to obtain a synthetic description of their behavior under seismic
condition; thirdly, the current state of all bridges under scenario earthquakes has been
determined; the final step has been to rank the bridges in order of importance (vaue
of the bridges and its role in ensuring continued communication), rehabilitation cost,
simultaneous necessity of interventions for non seismic maintenance and repair.

Chapter 3 (Important phenomena affecting the bridge response, page 27)
deals with topics that can be regarded either from the design or the assessment
standpoint. These are issues that significantly affect the overall behavior of bridges,
modifying the response and affecting the performance, and are seldom included into
design considerations without proper account of the subsequent deficencies that can
hamper the design objectives.

The phenomena considered in Chapter 3, which are recognized a certain
relevance, are:

Multi-support excitation
Soil-structure interaction
Vertical oscillations

Multi-support seismic excitation (Section 3.1, page 27, based on the
research work by Monti, G., Nuti, C., ard Pinto, P.E.) denotes the difference in
seismic input that is generally observed at the pier supports of long bridges. Recently
recorded soil time histories obtained from strong motion arrays instaled in seismic
areas have clearly demonstrated that the notion of relatively close points on the soil
surface is not synchronous, that is, even relatively close points can experience
significant relative displacements. This phenomenon is due both to reflection and
refraction of seismic waves through underlying il layers with different mechanical
characteristics and to the presence of soils of different nature under different support
points. From the point of view of structural analysis, the most important implication
of this observed behavior is that the convertionally adopted assumption of equal
seismic input under al supports is only acceptable when dealing with bridges of
moderate dimensions, while it is far from reality if long-span bridges (isolated or not)
are to be studied. In these cases, due consideration should be given to the non
synchronism of the seismic action, since different input motions experienced at
adjacent supports can significantly modify the overall structural response thus
jeopardizing the design concept. Present guidelines, when they exist, are vague
and/or too grossly empirical. Actually, non-synchronous input induces a specific type
of excitation in which pseudo-static relative displacements are included, with ensuing
possibly significant variations of the displacement field and of the ductility
requirements. The above effect is obviously of special relevance for bridges, whose
effectiveness is conditioned to an accurate assessment of the relative displacement
between deck and pier caps. In section 3.1 this pheromenon is studied through a
series of numerical analyses on both conventional and isolated bridges and its effects
clarified.



Soil-Structure I nteraction (Section 3.2, page 68, based on the research work
by Ciampoli, M., and Pinto, P.E.) is the typica effect resulting from the difference
between the structural response evaluated assuming an ideal rigid foundation and that
obtained with the actual soil foundation. The difference can be attributed to two
distinct physical causes: the propagating nature of seismic disturbances in the form
of waves, which makes the soil motion at any given instant generally different from
point to point within a spatially extended foundation, and the inertia forces
transmitted by the structure to the soil during the oscillations, which induce a
deformation in the soil that adds up to the one existing in the free-field. In section 3.2
a large parametric study on this second phenomenon concerned with bridge piers of
common geometry having spread or strip footing foundations is presented, where, as
opposed to al the studies developed thus far, the inelastic response of the
superstructure is considered. Quantitative information are given on the extent by
which yielding tend to decrease SSI effects, and especially on the effects of SSI on
the maximum required ductilities in the critical regions of the superstructure.

Vertical oscillations (Section 3.3, page 88, based on the research work by
Petrangeli, M., Pinto, P.E., and Ranzo, G.) is a secondary phenomenon that occursin
bridge piers subjected to horizontal seismic input. Analyses conducted on single
column bent systems indicate that flexural cracking produces significant bending-
induced axial vibrations. This effect is particularly relevant in squat elements with
low axial force where the sway of the cross section neutral axis under aternate
bending causes strong hammering impulses at crack closure. Performance and design
forces of bearings and other anti-seismic devices should be estimated with more
accuracy, based on the expected level of combined vertical and horizonta
acceleration response on decks. In section 3.3 this problem is dealt with and a
tentative equation for the prediction of this flexural-induced vertical acceleration
component is proposed, based on simplified section kinematics and elastic impact
analysis.

In Chapter 4 (Upgrading of bridge piers with FRP, page 108, based on the
research work by Monti, G., Nistico, N., Santini, S., Spoelstra, M.R.) another topic,
which logically follows those treated in the previous Chapters, is treated: that of the
rehabilitation of old bridges, with particular reference to the piers. Common
retrofitting techniques of bridge piers typically am at increasing the available
ductility by enhancing the confinement action in ether the potential plastic hinge
region or over the entire pier. Steel jacketing has had an extensive use in practice and
has proved to be an effective measure for retrofitting, yet recently advanced
composite materials, such as fiber-reinforced polymers (FRP), are increasingly
gaining awidely recognized role as structural materials and are now fully recognized
to represent an effective aternative retrofit technique for bridge piers. Tests carried
out in the USA and in Japan have shown that strengthening with innovative
composite jackets improves the strength and the ductility of columns, concluding that
wrapping of columns by FRP materials provides an affective and economical
aternative for seismic retrofitting of piers.



Following these encouraging results, in the last years, in California, more
than 500 bridge piers have been wrapped with advanced composite materials and
now similar programs are currently under way in Japan. In Europe, where notable
interest exists, the problem is till in an interlocutory phase, mainly becawse of the
lack of established and accepted design rules, which sow down the process of
promoting FRP as an ‘official’ construction material.

The intent of Chapter 4 is to give a contribution towards the development of
such design rules to obtain, through FRP jacketing, the desired level of upgrading of
insufficiently ductile piers, designed according to obsolete codes. Firstly, a recently
developed model of FRP-confined concrete is presented, which has the capability to
trace the peculiar response of concrete under the continuously increasing
confinement applied by an elastic material such as FRP, as opposed to the traditional
models where it is assumed that steel applies a constant confinement after yield.
Through such model practical formulae for predicting the ultimate strain and strength
of FRP-confined concrete are developed. Subsequently, a study on FRP-confined
concrete sections is presented, and practical design equation are developed, which
allow to determine the optimal FRP thickness to wrap circular sections with, given a
target performance to achieve.



2 BRIDGE SYSTEMS

2.1 Analytical seismic assessment of the bridges on a highway system

In Italy, the largest part (90%) of the existing highway system is owned and
operated by a single Company: Autostrade. Its network, shown in Figure 2.1, has
roughly 5500 km of highways, comprising a total of 2826 bridges. The highways
were built essentialy in the 60's and in the 70's, with only minor additions going on
until presently. Seismic design regulations of the time were amost nominal:
horizontal forces equal to 10% of the permanent weights in the zones of highest
seismicity (7% in the other seismic zones), with no attention paid to ensure ductile
behavior, to check compatibility of displacements between adjacent decks, the
strength and admissible displacements of the bearings, etc.; moreover, many aress,
which an hazard analysis reveal to be seismic, in those years were not thus classified.
In a large percentage of cases, the reinforcement of the piers is not dictated by the
seismic forces, but from wind and braking forces, or more simply by minimum
percentage requirements. Fortunately, tradition has in Italy that bridge piers should
be (and look) rather rigid, as compared to those of similar bridges elsewhere, and this
provides in many cases a much appreciated extra strength. Also for the foundations,
Italian practice is rather conservative, in order to ensure satisfactory performances
under service loads, and this leads in many cases to foundations which are stronger
than the superstructure, a desirable property under seismic action.

Figure 2.1. The Italian highway network of Autostrade.



The last strong earthquakes in Italy have not produced significant damages to
bridge structures (by chance, due to the fact that the highways were far from
epicentral areas). In spite of the lack of this, usually potent, incentive to assessment
and rehabilitation programs, Autostrade has resolved to undertake a systematic
scrutiny of its entire bridge stock in terms of seismic performance. Given the
unusually large scale of the problem, particular attention has been devoted to the
setting up of an appropriate assessment method, with the constraints that it should
not be based on qualitative typological vulnerability forms on one hand, nor it should
require detailed analyses based on drawings, at the other extreme. A number of
aternatives were initially considered; the one receiving more credit at an early stage
was to try to categorize the whole stock into a discrete number of types, then to select
a representative bridge within each type and to analyze it in detail. All bridges
belonging to the same type would have then been assigned the vulnerability found
for the representative structure.

A much more accurate and efficient procedure has been finally set up, which
relies upon an existing data bank created by Autostrade for maintenance purposes,
alowing a complete reconstruction of the geometry of al bridges. Details and
limitations of the procedure are described in the following.

The outcome of this part of the study is one number for each bridge,
expressing the probability of failure of the bridge, given that the peak ground
acceleration having a selected (the same for the whole network) annual probability of
exceedance occurs at the bridge site. To evaluate this set of numbers, a reference is
needed. The criterion adopted has been to consider as acceptable (i.e. no intervention
on the bridge is required) all values that are equal or below the probability of failure
of representative bridges designed in accordance with Eurocode 8/2 (1994), given the
occurrence of the design acceleration. Of course no such value can be found in
ECB8/2. This has required a side study, consisting in designing a number of bridge
structures, similar to those of interest, in full accordance with the EC8/2 provisions
and, subsequently, in performing on them a probabilistic risk analysis, conditiona to
the occurrence of the acceleration used in the design. The values obtained had clearly
acertain scatter, and a reasonable upper bound was therefore sel ected.

The end result of the whole study, as reported in the following sections, is a
list of bridges, ordered for decreasing values of risk, which do not fulfil the safety
requirements for new designs according to a modern code. This is considered to be
the point of departure for developing cost-benefit strategies necessary for providing
guidance for the amount of strengthening to be provided.

2.2 Screening of the bridgesto be examined

About three quarters of the Italian territory is considered as seismically
active, and earthquake resistant design is compulsory. Seismicity is not uniform,
however, the southern regions having the heaviest record of destructive events. A
plot of all the events occurred since the year 1000 with intensity larger than 7 is
shownin Figure 2.2.



Figure 2.2. Historical eventsin Italy with Iy> 7.

The first necessary step in the study to be undertaken is clearly to determine
the seismic hazard along the route of the various highways. This is just one side of
the problem, however, the other one being the level of seismic intensity for which a
risk evaluation of bridgesis warranted.

Whether designed for earthquakes or not, al bridges possess a certain
resistance to lateral loads, which comes from requirements of stiffness and from
design for wind and other horizontal forces. If this “natura” resistance, expressed in
terms of ground acceleration causing failure, is larger than the ground acceleration at
the site having an appropriately chosen (large) return period, any seismic verification
becomes unnecessary.

The two steps described above have been carried out according to the
following criteria.

2.2.1 Hazard analysis

The combined historical-geophysical information available allows to
subdivide the Italian territory into 45 homogeneous regions, for each of which the
catalogue data are sufficient for determining a separate Gutenberg-Richter law for
the intensity, including upper and lower bounds. Using a single attenuation law for
the whole range of intensities and for all regions (alternatives are available, but they
are not adequately supported), a Cornell type of analysis has been carried out to
determine the value of Iy, having specified values of the return period, Ty, along

the highway route. Values of Tz =500 years and 50 years have been considered, the



former one to be used for ultimate limit states (ULS) verifications. Selected results
for two highways, the N-S Milano-Napoli and the W-E Napoli-Canosa are shown in
Figure 2.3. The latter highway crosses one of the major seismic regions of the
country.
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Figure 2.3. Hazard curvesfor two Italian highways.

2.2.2 Natural seismic resistance

Out of the total of 2826 bridges, more than one third: 1151, are made up of
decks which are simply supported on different piers systems. Other 1363 bridges are
single span structures directly supported on the abutments, and the remaining 312
bridges are varioudly distributed among Gerber, arch, continuous deck, cantilever
construction and frame-like types.

Leaving out bridges of unique characteristics, like some large arch bridges
built in the sixties, as well as other important bridges with large spans (in excess of
100 m), for which specific vulnerability studies are unavoidable, the category of the
simply supported bridges has been considered as the one with the largest risk and,
inside this category, the piers made up of single bents as the more vulnerable.

Searching in the data base of Autostrade, the characteristics of which will be
presented later, the whole range of cross-section properties of the piers, the
corresponding range of heights for each section geometry, and the span lengths have
been examined. Span length is not a strong parameter, since most spans are around
30 m, only the more recent ones reaching 40 m. The key parameter is the ratio



between the cross section dimension and the height of the pier. The choice has finaly
been made of two cross section shapes, each one associated with a range of heights,
asshown in Table 2.1, for atotal of 10 cases.

Table 2.1. Representative piers examined.

CROSS SECTION (m) HEIGHT (m)
Rectangular hollow 6.60 x 3.80 10,15,25,35,45
Circular hollow 3.80 8,12,16,20,24

Although they are representative of the actual population, the cases examined
do not correspond to existing bridges: they are believed to be an hypothetical sample
lying on the more vulnerable side of the whole set. The virtua bridges have been
subsequently designed using the loading and material codes applicable in the period
1960-1970, considering traffic and wind loading, but excluding seismic forces. With
the longitudinal and transverse reinforcement known, a numerical model of the
bridge can then be constructed.

Flexural behavior is described by means of a bi-linear force-displacement
relationship at the top of the pier. The details of this derivation are given later; for the
purpose at hand the characteristics that are used are: the yield force F,, the stiffness

K =F, /Dy, where D, isthetop displacement at yield, the period T = 2/pM/K,
where M is the mass of the deck inclusive of the pier cap and of the part of the pier,
and the ultimate ductility m, =D,, /D, , where D, is based on the ultimate curvature

of the base section, evaluated by assuming conservative values of the compressive
strain of concrete.
If S, (T) denote an appropriate elastic response spectrum normalized to a unit

peak ground acceleration, the value of A causing flexural collapse is evaluated as.

L (1)
M S,(T)
provided V, ® F,, where V, is the ultimate shear capacity of the pier. When the

above condition is not satisfied, shear failure precedes flexural failure, and the
corresponding acceleration is:

— VU
S0 ?
In the andlyses, S,(T) has been taken as the normalized elastic spectrum
suggested in the Eurocode 8 for intermediate soil conditions, while shear capacity
has been evaluated in accordance with Eurocode 2. The values of A, obtained for
the ten cases of piers, in the transverse direction, are reported in Table 2.2.



Shear failure occurs only for the shorter (H=10 m) rectangular pier; in al
other piers collapse is governed by exhaustion of ductility. Circular piers have
consistently lower values of A, due to lower available ductility with respect to the

rectangular ones. this in turn is due to the shape of the section and to the higher
average vertical stress.

Table 2.2. Values of acceleration causing collapse.

RECTANGULAR CIRCULAR
H (m) 10 15 25 35 45 8 12 16 20 24
A\; (@ | 0.25 2.6 1.7 1.4 14 | 047 | 037 | 0.31 | 0.28 | 0.34

It is observed however, that al values obtained are rather high, perhaps
higher than expected, given the total absence of design provisions for seismic
resistance. This is principally a consequence of the relatively large dimensions
adopted for the piers, for reasons of minimum stiffness and/or aesthetics.

The same piers have been combined in various ways to form longitudinal
bridge configurations. the analyses made assuming equal longitudinal displacements
have yielded valuesof A, of the same order of magnitude than for single piersin the
transverse direction.

In addition to the structural failure mechanisms considered up to now, the
possibility of collapse due to loss of support of the deck has also been considered.
This type of failure has been frequently observed in recent earthquakes even for
bridges of the last generation.

The modeling assumptions for this phenomenon have been rather simple: two
identical adjacent piers have been considered to move in the opposite direction, with

a maximum relative displacement evaluated as. My =1/2nlz =1.41m, where m

is the maximum displacement at the top of each pier. A seating length of 50 cm has
been considered; the most unfavorable situation occurred for the tallest rectangular

pier (H=45 m) for which the value of  A.(50 cm) = 0.13g was found.

2.2.3 Final selection of bridges

For failures of structural types, the lowest value of A, within the population
considered hasbeen: A,=0.25g, related to a shear type of failure. According to the

relationship adopted between A and 1: A, =10 23%6*0.1908! " tha corresponding
vaueof | is9.

Considering the variability inherent in the relationship on one hand, and the
possible existence in the whole network of bridges more vulnerable than those
examined, the threshold below which no seismic evaluation is required has been set

to Iy =8P 0.15g. Analogous considerations of prudence led to adopt a value of



I=7 for the threshold below which no intervention preventing decks from failing
needs to be considered.

Comparing the values of the two thresholds with the 500 years return period
hazard, it has been found that for what concerns structural failure only 6 of the 15
highways, and not al for their entire length, remain: they are shown in Figure 2.4.
For the problem of unseating the risk is larger, and 12 out of the 15 highways need to
be checked under this respect.

Figure 2.4. Highways for which risk analysis has been performed.

2.3 Evaluation of the bridges

2.3.1 Outline of the procedure

Information on all bridges of the network Autostrade is contained in a data-
bank, to be described in the following section. The procedure for seismic evaluation
reads sequentially, for each of the six highways left from the preliminary screening,
the location of each bridge: if the calculated local hazard is less than 1=8, it passes
directly to the next ore, until one is found for which | 3 8. The corresponding value
of the peak ground acceleration is calculated.

Entering into the data-base, the procedure selects the information required to
reconstruct the geometry of the bridge, and all available elements required for the
purposes of the evaluation. Given the geometry, and using the loading and material
codes in force a the time of the construction, the longitudina and transverse
reinforcement of the piers is determined in turn. The available data allow this
simulated design to be carried out for the majority of existing pier types. When data
are not sufficient the bridge in question is tagged for a separate ad hoc treatment.



A mechanical model of the pier is then set up. Evaluation consists in
determining the probability of collapse of each pier: Pj for a combined mechanism
of flexure and shear, given the value of the site peak ground acceleration
characterized by an average return period of 500 years. In obtaining Py , flexural and
shear strength, ultimate ductility, elastic spectral ordinates and inelastic force

reduction factors are assumed as random variables. The collapse probability for the
entire bridge is evaluated with the assumption of independent collapses of all piers:

Pr =1- O(l Pfi) ©)

2.3.2 Thedata bank SAMOA

SAMOA has been elaborated by Autostrade for severa purposes, the main
ones being the possibility of keeping up-dated the state of each bridge in terms of
deterioration phenomena affecting materials (carbonation of concrete, oxidation of
steel, etc.) and elements (loss of concrete, cracking, degradation of joints, bearings,
movements in the foundations, etc.), as well as for keeping track of al the
interventions made, which may range from ordinary maintenance to structural
restoration, with or without upgrading.

STRUCTURAL PARTS

CELK = vERHANGS

DEGK = CROGEBEAM S

DESK — BEAMNS

Figure 2.5. Sketch of bridge elements considered in SAMOA.



Bridges in SAMOA are decomposed into the following structural elements:
foundations, piers, abutments, arches, decks, bearings, joints. One form is filled for
each element. The case of asimply supported bridge isillustrated in Figure 2.5.

For what concerns the piers, that are the elements to be known in more detail
for the purpose of evaluation, the following classification is adopted. The structural
systems can be: Single bent, Wall, Portal frame and Multi-bay frame, both with or
without intermediate transverse beams, plare or spatial. The cross sections of the
vertical elements can be: rectangular, circular, polygonal, éliptic and “other”, either
solid or hollow, in the latter case smply or multiply connected.

2.3.3 Simulated design of the piers

Actions considered in the design include permanent loads, traffic, braking,
wind loads and, if at the time of construction the site was classified as seismic, static
equivalent seismic forces (to be combined with the permanent loads only).

The action effects are of immediate determination in the case of simple
cantilevers. For frames, the assumption has been made of a stiff top transverse beam,
so asto alow for the approximation of treating the columns as built in at both ends.

The most unfavorable combination of action effects has been used for the
design of the base section of the piers (all piers have uniform dimensions along their
height), for bending and for shear. Admissible stress criteria have been adopted, with
values consistent with the presumed strength characteristics of corcrete and steel. In
many cases, the amount of reinforcement (longitudinal as well as transverse) has
been found to be governed by minimum requirements. Spot comparisons of the
calculated amount of reinforcement with that indicated in the design drawings have
shown good agreement between the two.

2.3.4 Evaluation procedure

The mechanical model of the pier consists in all cases of a cantilever carrying
amass at the top. If the original structure is a frame, with two or more columns, the
force-displacement relatiorship is evaluated considering the columns as built in at
one end and with a height equal to half of the clear height between foundation mat
and pier cap. The moment-curvature relationship of the end section is sufficient for
obtaining the yield (F,,m, ) and the ultimate (F,,m,) pointsinthe F - n curve. As
shown in Figure 2.6, the variation of the curvature along the height is assumed to be

parabolic between yield and decompression sections, and then linear up to the top.
The expressions for the two points are:
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with obvious meaning of the symbols. The length of the plastic hinge has been taken
as half of the height of the section. The ultimate compression strain of concrete has
been assigned a value of 0.5%.

The F - n diagram defines flexural strength and ductility of the pier.
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Figure 2.6. Variation of the curvature along the height of the pier.
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Figure 2.7. Truss model for the shear force equilibrated by vertical load.

For the assessment of shear capacity, use has been made of the expressions
proposed by Priestley at al. (1994):

Vin=V¢ +Vs +V, (6)
where V, is the contribution of concrete, V is the shear carried by transverse steel
and V, is the horizontal component of the inclined thrust of the vertical load P,

which is equilibrated at the base section by the compressive resultant displaced from
the axis of the column (see Figure 2.7). The expression of V, is:

Ve =029k, [f, A @)



with f; the concrete compressive strength (MPa), A=0.8A,, where A isthe gross
concrete section and Kk is a function of the required ductility: isequal to 1 for n£ 2,
decreases linearly from 1 to 0.3 for 2 < £ 4, and remains constant thereafter. Vy is
the expression for the truss model and V, = Ptanb, where b isgivenin Figure 2.7.

As indicated previoudy, the evaluation has been carried out taking into
account the uncertain nature of the variables involved, on the action side, on the
response side and on the capacity side. On the action side, the starting point has been
the elastic response spectrum contained in EC8. The spectral ordinates of EC8 have
been assumed as representing the 50% fractile value of the response, and they have

been transformed into random variables (r.v.) by multiplying the median S(T) by a
rv.: exp(as), lognormally distributed and with unit median.

Non-linear response behavior has been described through what is commonly
called strength reduction factor, representing the ratio between the strength needed in

case of éastic response and the minimum strength a structure must have till
compatible with its ultimate deformation capacities. The expression adopted for

r(mT) is the one proposed by Hidalgo and Arias (1990):

T
KTy +——
m- 1
where T is the period of the structure and kT, is a parameter depending on the
expected frequency content of the motion. The previous expression has been
assumed to give the median value of r(¥, which is then randomized by
multiplication for ar.v. e<p(a ; ) log-normally distributed and having unit median.
On the side of the capacity, the three quantities: flexural strength F, ultimate
ductility m, and shear strength V,,, have been trested asr.v.’s in the same way as the
previous ones, i.e., by multiplying their median values by the three r.v.’s e(p(aF )

expla ) and exp(ay ), al having unit median and log-normal distribution.

r(mT) =1+ (8)

2.3.5 Quantification of risk
If the response is in the elastic range, the maximum force on the pier is:

Fnax =M Ay S,(T) ©
where A, is the local value of the peak ground acceleration, and failure can only
occur if F, exceeds the shear strength V. In the inelastic range, the following
equation applies:

M A, S,(T)

F(m :W (10)



where the dependence of F on the ductility actually required has been made explicit.
Failure in this case can occur due to two different mechanisms: a flexural failure, if

to satisfy (10) it must be mé m,; ashear failure if F(@ islarger than V.
The faillure domain can in both cases be expressed as union of two domains:

A=[m* m]E[F(M?2 V,m] (11)
In order to calculate the probability content of A it is convenient to separate
it into the union of two non-overlapping domains:

A={[m® m,]C[F(m <V (m]} E{F(mM 2 V,(m} (12)
in which the first domain represents a flexural failure excluding shear failure and the
second one a pure shear failure. The probability contents of the two domains are
directly summable, while the total probability of failure includes a third contribution,
I.e., the probability of a shear failure for m <1. Introducing the notations:

gem 0 /(Mo
=| T = = 13
m(m) oggﬁrZj v(m) oggﬂ;ﬁZj (13)
X=ag+ta,-ag Y=ag-ay (14)
aM A S, (T)0

g(m =log F(n)r(mT)% (15)

it can be shown that the probability for flexura failure conditioned to survival in
shear is given by the expression:
Py 1 . &?T'(m) &n(m )/SYHQ( )/Sx— ( T.n)z/ZSz)
JZps ch Sm o 9 J
X 1 m g & 1-r? g
while that for shear failure in the inelastic range is:
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and that for €astic shear failure:
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In the previous equations, F (>) is the Gauss normal distribution function and
r isthe coefficient of correlation between ther.v.’s X and Y:
2
S
r= = (20)
Js2 +s2+s2s2 +s2

similarly, r ¢ isthe coefficient of correlation between X cand Y.
The three integrals above are rapidly performed numerically.

2.3.6 Selected results

The procedure computes P; in sequence for al bridges belonging to each of

6 highways for which seismic evaluation is warranted, according to the screening
procedure illustrated previously. A sample of the results is presented graphicaly in
Figure 2.8 and Figure 2.9, which refer to the longest highway (A1: Milano-Napoli),
and to the most hazardous one (A16: Napoli-Canosa), respectively.
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Figure 2.8. Risk of bridgesin the Al highway.
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Figure2.9. Risk of bridgesin the A16 highway.

In the horizontal axis the bridges examined are numbered in progression, their
distance from the origin appearing in the lower part of the figure. The vertical axis at
left gives the values of P; corresponding to the spikes in the figure, while in the
background the variation of the hazard is also given, with the values to be read in the
right vertical scale. A distinction is made between single bent and frame-like type of

iers.
P One can immediately note that while in the A1 only a few isolated bridges
have values of P; larger then, say, 0.10, in the A16 the risk is much more diffused,

with a good number of bridges having a P; closeto 1, given the occurrence of the

500 years event.

Results for the six highways are summarized in Figure 2.10, which gives for
the total population of bridges examined the distribution of the probabilities of
failure. A systematic difference appears between the bridges of the two categories,
with framed piers clearly more vulnerable than those with a single bent. For example,

about 75% of the latter have a P; £10° 2, against 30% of the former. The difference

becomes smaller, however, with increasing value of risk, and for P; >0.5 the
Situation is inverted.
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Figure 2.10. Cumulated frequency of probability of collapse of examined bridges.
Continuous line: bridges with single bent piers; dashed line: bridges with framed piers.

24 Acceptancecriterion

The values of P; obtained with the procedure described in the previous

paragraph represent a measure of the risk of the bridges: to judge whether they are
acceptable or not an homogeneous reference measure is necessary. Among various
aternative possibilities the choice has been made to use as acceptance threshold the
safety provided by the modern codes for new structures. This choice might in
principle be considered as overly conservative and uneconomical, as it is widely
accepted that for existing structures the amount of retrofit can be somewhat less than
“complete’, i.e., alower safety level than for new ones can be accepted.

But for the type of bridges under consideration, in which the vulnerable
elements are essentially the piers, the economical arguments play differently than, for
ex., in the case of substandard reinforced concrete or masonry buildings. In the case
of bridges, the total cost of the intervention is made up principaly by fixed costs,
which do no depend on the amount of strengthening to be provided, while the extra
cost due to extra strength is an insignificant fraction of the total cost. Thus, the
attainment of a safety level equal to that for new structuresis alogical target.

Modern codes, however, are not explicit on the level of protection they
provide: it should be inferred from the logic inherent in these documents. Eurocode



8, for example, after stating its objective as that of ensuring, “with an adequate level
of reliability”, that communications should not be disrupted as a consequence of
seismic events, implements the concept in practice in the following way.

The first step consists in selecting, according to the importance of the bridge,
the return period (Tr) of the design seismic event for the ULS. Given Ty (say, 500
years) the corresponding seismic intensity is found and the design made accordingly.

The design rules (analysis, dimensioning and detailing) are deemed to be such
asto guarantee, with an adequate level of reliability, that, given the occurrence of the
design event, bridges maintain their integrity and a limited capacity for traffic load,
though they may need substantial repair work. The idea is therefore clearly expressed
of the existence of a probability that a bridge, designed following the code and for an
action of given return period, may collapse at the occurrence of this action.

How high is this conditional probability is not to be found in the code,
however, for reasons that are obvious. If, as in the present case, the order of
magnitude of the probability inherent for ex. in EC8 is desired, it must be estimated
by means of ad hoc analyses on representative designs. This is what has been
actually done, by first selecting a number of possible candidate structures and finally
by identifying one specific pier type and a single geometry. In detail, the pier is a
single bent, with circular hollow cross section having an external diameter D=2.60 m
and thickness of 0.30 m The height is H=10 m and the mass at the top is 1,000 t,
corresponding to a deck length of 40 m.

The criterion adopted for the choice has been that pier dimensions should be
related to actual strength requirements and not, as it is often the case, to extraneous
reasons as uniformity, aesthetic, etc. Regarding the height, it can be shown that an
increase of it within reasonable limits would reduce the response and the necessary
amount of reinforcement.

The material properties have been chosen as follows. For concrete: average
strength: f, = 30 MPa (design: f,y = 20 MPa), average tensile strength: f, = 0.3

fcz/3 = 2.9 MPa, average ultimate compressive strain: ey, = 0.012. For steel: average
strength: f,, =500 MPa(design: f,y =380 MPa).
The design peak acceleration has been set a  Ay= 0.35g, and the value of

behavior factor given in EC8: q = 3.5 has been adopted. The design spectrum is that
of EC8 for intermediate soil sites.

24.1 Calculation of P for Aj=0.359

The rules in EC8 are such as to make shear failure practically a zero
probability event. Hence failure can only occur due to exceedance of the available
ductility. The mechanical model of the pier is the same used for the seismic
assessment of existing piers, and is represented by a bilinear force-displacement
relationship. Using mean values of the mechanical properties of the materials, the
displacement ductility resultsto be: m, =9.08.



The failure condition writes as usual:

F ()= M Ay Si(T)

21
) (21)

with the known meaning of the symbols.
The quantities assumed as rardom are: F, m,, S,(T) and r(mT). Each

random variable is obtained multiplying the median values by a random variable
exp(a;), lognormally distributed with unit median. For the parameters of the

distributions of the normal variables a;, the following values have been adopted:

Strength Sa, @CoV(F)=0.15
Ductility S, @CoV(m,)=0.20
Spectrum Sag @CoV(Sa =0.20
Reduction factor Sa @CoV(r)=0.25
With:

aM A, S,(T)0
e A
a

the probability of failure can be expressed in closed form as:

" Fog(ym)Q 1 By Yda(m], 23)
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and the integral evaluated numerically.
Thevalueof P; obtained for the pier under consideration is:

P; @2X0 2 (24)

This value is in general agreement with the results of other studies on the
subject. It should not be considered as a “rigid” reference: with different geometry
and dimensions, different estimates of the parameters defining the randomness,
possible inclusion of other parameters, refinements in the mechanical models, etc.,
the range of values could expand of one order of magnitude in both senses.

If not in absolute terms, however, the result obtained is significant as a
relative measure. The same mechanica models have in fact been used in the
assessment of the existing and of the new bridges: the possible bias and deficiencies
of the models should disappear n the comparison. The vaues of the parameters
defining the randomness are either the same, or are reasonably differentiated for
taking into account of the differences between the two situations. The arguments

above support the conclusion that the values of P; attached to each bridge provide a

correct ordering criterion in terms of risk, and that the threshold separating the
categories of acceptable and non acceptable risk is placed in a defensible position.



2.5 Resultsand conclusions

Starting from 1151 bridges with simply supported decks belonging to the
Autostrade network, the screening procedure based on the comparison between the
500 years return period hazard and their “natural” seismic resistance has reduced the
number of those to be evaluated to 425; 307 of these bridges (i.e., those for which the
data bank SAMOA allowed areconstruction of their geometry to be made) have been
evaluated quantitatively following the criterion of designing them according to the
code of the time and then performing on them areliability analysis.

The measure of the risk adopted has been the probability of collapse
conditioned to the local 500 years return period hazard. The values of P; obtained
for the 307 bridges have then been compared with a reference value: P =102,
considered to be representative of the safety provided by a modern code (EC8/2) to
bridges of new construction. The result is that 155 bridges have a risk larger than or
equal to the acceptable one. Only for about half of them, however, the difference
with the target is really significant, while the rest has a risk within a narrow range
around the target (values of P;down to 5:10-3 are included in the count of 155).
While for the former haf an intervention of seismic retrofit is warranted per se, for
the second half the decision of intervening should be based on a combination of
factors, rather than just on seismic risk.

As far as the procedure in itself is concerned, a few aspects are worth to be
mentioned in concluding. The idea of utilizing the geometric data from a data bank to
reconstruct the characteristics of the bridges by means of a smulated design has
proven to be both accurate and very fast.

The limits of the procedure are equally obvious as it advantages. Firs of al it
presupposes the existence of a data bank of the type described in the paper, where the
necessary data can be easily extracted from, which is other thing than to have the full
design of the bridges informatically stored. Secondly, the procedure works reliably
for bridge of ssimple structural types. Hyperstatic bridges, or even hyperstatic piers of
simply supported bridges, cannot be designed automatically on the basis of the
geometry alone, due to the multiplicity of the design options. These bridges,
however, represent a small portion of the existing stock, so small that their seismic
evaluation can be realistically carried out on an individual basis.
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3 IMPORTANT PHENOMENA AFFECTING THE BRIDGE RESPONSE

3.1 Multi-support excitation

From the point of view of structural analysis, the most important implication
of multi-support excitation is that the conventionally adopted assumption of equal
seismic input under all the supports of a structure is a pure abstraction, acceptable
only when dealing with buildings of moderate dimensions, and it is even farther from
reality if extended-in-plan structures are to be studied. In some cases, such as long-
gpan isolated bridges like those examined in this report, due consideration should be
given to the non-synchronism of the seismic action, since different input motions
experienced at adjacent supports can significantly modify the overall structural
response thus jeopardizing the design concept. It is in fact common to observe, in
every mgor seismic event, spectacular failures of bridges due to unseating of the
decks, which leave little doubt that considerable relative displacements can exist in
the free-field, even between points a few tenths of meters apart.

Studies on the response of extended- in-plan structures subjected to different
motions at the supports have started some thirty years ago and continue until today
(for ex., Bodganoff et a. 1965, Perotti 1990, Moerland et al. 1993), the recent ones
making use of the stochastic models just mentioned. Many of these studies focus on
the algorithm to obtain the response and are often illustrated with reference to simple
examples having a scant connection with real design cases. Others, (for ex., Der
Kiureghian and Neuenhofer 1992, Heredia-Zavoni and Vanmarcke 1994), are more
design-oriented, in that they provide more or less simplified methods to account for
the effects of the correlation between the support motions.

No study is known which considers the inelastic behavior of the structure,
excluding those by the authors (Moerland et al. 1993, Monti et a. 1995, 1996, Monti
and Pinto 1998). Thisis surprising, because if it is true that present design practice is
based on linear analysis, and that non-linear behavior effects are accounted for by
means of a simple factor, there isa priori no reason to believe that this approach may
extend its validity to nonsynchronous situations, at least not with the same factors.

This manifest lack of knowledge on the subject is reflected in modern seismic
codes for bridge design, where the nonsynchronous nature of seismic input is
accounted for only by means of semi-empirical provisions for extra seating lengths,
adequate joint gaps, minimum relative displacements between adjacent foundations.

While seismic design codes cater pragmatically for this phenomenon by
means of increasingly severe provisions, research is looking since many years now
for more rational and substantiated answers. For these answers to come, two aspects
need to be covered in sequence: a) acquiring a sufficient knowledge of the
mechanisms underlying the spatial variability of the motion, dealt with in section
3.1.1, and b) assessing through numerical studies its relevance on the response,
possibly in terms articulated enough to be of direct use for design, as reported in
sections 3.1.1.1 and 3.1.3 for conventional and isolated bridges, respectively.



3.1.1 Soil motion

As regards the representation of the soil motion including the phenomena
producing multi- support excitation, a breakthrough has occurred with the installation
of strong motion arrays. The approach consists in gathering data, and processing
them on the basis of an assumed stochastic model. The information is sufficient to
implement but the simplest of the models, i.e., second moment fields fully
characterized by the power spectral densities at each station and by a coherence
spectrum, assumed to depend only on the relative distance between stations. The
smplicity of this model needs not to be emphasized, as well as its dubious
applicability to cases of pronounced soil inhomogeneity, not to speak of irregular soil
profiles. Its merits, however, are great enough to justify its use for shedding light
upon what really matters: the sengitivity of the structura response to the gross
features of the phenomenon.

3.1.1.1 Spatial model for ground motion

From a physical point of view, the spatial variation of seismic ground motion
may be schematically thought of as the result of the combination of three different
phenomena: a) the incoherence effect, resulting from reflections and refractions of
waves through the soil during their propagation (this effect is also referred to as
geometric incoherence), b) the so-called wave-passage effect, that is the difference in
the arrival times of seismic waves at different stations, and c) the site response effect,
due to differencesin local soil conditions under the various stations.

Within the stochastic model assumed here, spatial variability is described by
means of the cross-PSD matrix of the ground acceleration as follows

Sy (d.w) = Gd,w)" Saa(W) (2)
where the symbol ~ denotes the Hadamard product by which each element of
G(d,w) is multiplied by the corresponding element of Sa(w), w= circular
frequency, and SAA(W) is the (full) matrix of the ground acceleration cross-PSD
functions at the N locations, given as

and G(d,w) Is the (fuII) matrlx of the complex coherency functions accounting for

the three effects of incoherence, wave passage (Luco and Wong 1986) and site
response (Der Kiureghian and Neuenhofer 1996)
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The incoherence term decays exponentially with the circular frequency w,
with the horizontal separation distance dj; between two stations j and | and,

through the shear waves velocity v,, with the inverse of the mechanical
characteristics of the soil. The second term depends on the projected horizontal
distance dh aong the wave propagation direction and on the wave circular

frequency w, and is a measure of the wave-passage delay due to the surface apparent
velocity of waves v,,,. The site response term is represented through a phase shift

independent of the distance
2 ImlH; WH, (- w))
Rl @W)F, (- w)] @

and dependent on the frequency-response functions of the soil columns at the
different stations

q; (w)=tan

i W

W% -w2+2'zjij

which represent the amplitude of a harmonic motion at the surface of the ground
caused by a harmonic motion of the form exp(ivvt) a the bedrock level. It is

important to note that the phase shift is completely defined in terms of the two
frequency-response functions, which only depend on the properties of the two soil
columns. In particular, it does not depend on the distance between the two stations,
or the power spectral densities of the bedrock motion. It should be emphasized that
the site-response component of the coherency function does not account for the
effect of incoherence resulting from scattering of waves within the two soil columns.
This contribution is rather included in the incoherence term.

Apart from the site response effect, which depends on the locally selected
PSD functions, in this study the coherency function is considered basically as a two-
parameter function, having lumped the mechanical characteristic of the soil and the
factor a into a single parameter expressed as the ratio v,/a, and the second one
being v,,. When v,/a® ¥, the first term tends to 1 and the incoherence effect

results from wave travelling and site effect only; if v, ® ¥, the second term tends
to 1 and the incoherence is due to the incoherence and the site effect only. Note that

in this formulation the geometric incoherence effect is given a higher weight (square
power) with respect to the wave-passage effect.

In the soil frequency-response functions H (w) in (5) the parameters depend

on the soil type (F=firm, M=medium, S=soft) as follows (Der Kiureghian and
Neuenhofer 1996):

W12+2iZjW

H;Ww) = j,1=1...N (5)



w;(F)=6pradisec, z;(F)=06

w;(M)=3pradisec, z;(M)=04 (6)
Wj(S): prad/sec, z; (5)=0.2
The PSD function adopted in this work is the well-known modified Kanai-
Tajimi spectrum of ground accel erations (Clough and Penzien 1975), expressed as

W4- "'4'22.W2.W2 4
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where &, = scdle factor, Scp (W)= normalized (two-sided) Clough-Penzien
spectrum, w; and z; may be thought of as characteristic ground frequency and

damping, and wy and zy are the parameters of an additional filter, introduced to

assure finite power for the PSD. All these parameters depend on the location j.
Note that the PSD of the ground displacement processiis:

D. = O, = O,
o b ' (vv%] - W2)2 +4z%jw%jw2 (Wéj - w2)2 +4z§jw§,jw2

The scale factors Sbj at al location can be found based on either the peak

ground acceleration or the peak ground displacement (PGA and PGD, respectively,
selected in this work as equal for all locations) according to the following relation:
PGA? PGD?
S)j = = (9)
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where Pa 0s: Ppos = peak factors corresponding to a 50% probability of

exceedance of the peak level (either PGA for the ground acceleration process or PGD
for the ground displacement process) at location j.

For a generic process Y, the peak factor can be calculated according to

(Vanmarcke 1977):
By s = \/ 2>4n2'82$p’t5 (10)
where t, = duration of the (stationary part of the) process and
W, = E[ Yz] 11
T Valv] w

where E[YZ] = mean square of the derivative of the process and Var[Y] = variance

(total power) of the process having PSD Sy (W):



el2]= 3, wisy (w)aw (12)

valy]= ¢, Sy (w)dw (13)
Note that W, only depends on the shape of the PSD and not on the scale factor; thus,

it can be written for the ground acceleration and the ground displacement processes,
respectively, as.

e L R I W
- va'a] - va'[p]

e'[#]= 8 wrse ow  ad E'[DF]= &, wlses (W) (9

where

x ¥ x ¥
va'[a]=g S Wdw  ad  va'[D;]=g wsey (Waw (16)
The characteristic ground frequency w; of the Clough-Penzien spectrum

depends on the soil type (F=firm, M=medium, S=soft) as follows (Der Kiureghian
and Neuenhofer 1992):

w; (F)=15rad/sec

w; (M) =10rad/sec (17)
W ¢ (S) =5rad/sec
while the other parameters can be determined as follows:
W W
Zs :2—5 Wy :1—0 z,=06 (18)

The PSD functions of the three soil types are presented in Figure 3.1 along
with the acceleration and displacement response spectrum.
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Figure 3.1. PSD and response spectra for soil typesF, M and S.



Thevauesof Va and W for the three soil types are:
Var, (F)=92055 Var, (M) = 62764 Var, (9 =45082  (19)
W, (F)=46276rad/sec W, (M) =21963rad/sec W, (S) = 64977 rad/sec (20)
Var, (F)=078974  Varg (M) = 26690 Varg (9 =21403  (21)
Wo, (F) =15521 rad/sec W, (M) =10578rad/sec W (S) = 05622 rad/sec (22)

Thus, the peak factor of the three soil types can be directly expressed as
follows:

Pa 0s(F)=4/2Int, +6.053 ij’0_5(F): J2Intg - 0.737
DnosM)=2NT, 74562 ad P os(M)= 2T, 1504 (23)
P 05(S)=+/2Ints +2.126 Po, 05(S)= 4/2Int, - 2.768

Note that from (9) it is observed that:

_PGD _ Pp; 05 Sp;

- - * (24)
PGA pAJ- ,05 S A;

Y sail (ts)

where s\, =./Var, and y o, is afunction of the soil type and of t through the

peak factors.
For example, for a stationary duration t,= 20 sec, it is:

y (20) = 00612 sec? Y\, (20) = 01345 sec? y <(20) = 04342 sec®  (25)

The above approach, where the soil motion is characterized by its PSD
function, is sufficient to allow a random vibration approach, which will be adopted
for the analyses of isolated bridges (section 3.1.3).

On the other hand, if full nonlinear analyses under generated time histories
are to be performed, a stochastic field needs to be generated. This is the procedure
followed in the case of conventional bridgesin section 3.1.2.

A possible procedure to generate a stochastic field can make use of the so-
called spectral representation method (Shinozouka 1972). The space-time random
field with zero mean, space-time covariance function R(d,t), d being the separation

distance, and frequency-wavenumber (F-K) spectrum S(k,w), where K =
wavenumber, is here simulated through



-1 0
tt)=v2 & A a][ (kw )Dka]/zcos‘?hk X+ W, Gt - L°+f() (26)
h=+1 j=0n=0 & Vapp g P

inwhich f Srr‘]) are two sets of independent random phase angles uniformly distributed

in (O,2p].
In order to use the above equation, a discretization of the frequency-
wavenumber spectrum is to be performed. The F-K spectrum is obtained as follows:

Sk, w) = S(w)clk,w) (27)

where
alk,w) == t‘jg(d w)e ™dd = - Z s 92uuv—5 (28)
T 2p T Pe §awg galW
Is the transform of the coherency function. Note that
¥
ok, w)dk =1 (29)
-¥
which implies
¥
oSk, w)dk = S(w) (30)
-¥

that is, the power pertaining to a frequency is distributed among al the

wavenumbers.

In the definition of C only the module of the coherency function is employed
é 2(]
~ 0

od W) = epe ?Wd : (3D)

Vs o

that is, only the geometric incoherence term is included in the FK spectrum. An

advantage of adopting Eq. @1) is that the resulting F-K spectrum is quadrant-

symmetric:

S(k,w) =S(- k,w) =S(k,-w) =S(- k,-w) (32)
and this permits to ssimplify the discretization of the spectrum. The concept of
quadrant-symmetry was first introduced by Vanmarcke (1983). Note that coherency
functions yielding quadrant-symmetric FK spectra can depict only the incoherence
(change in shape) of the seismic motions (Zerva 1992), and therefore the apparent
propagation (wave-passage effect) of the seismic motions should be explicitly
included in the equation of the simulated field, by means of the time-shift x/vapp.

The discretization is performed within the limits of an upper cut-off
wavenumber k, and an upper cut-off frequency w,, beyond which the contribution



to the total power can be considered as negligible for practical purposes. On the basis
of regressions on the F, M and S spectra, these can be determined as follows:

w, = 205w,

ku _ 6.65xi>wf°'84 Q07w (33)

S

The upper cut-off frequency was determined by satisfying the following condition

WU
oSk, wjow
0
W, +2p

(‘)S(k , W)dw
0

whereas the upper cut-off wavenumber was determined by satisfying the following
conditions

-1=10"° (34)

S(k ;W) = S 4073
l

—S(k,,w)=0

ﬂW ( u W)

= peak value of the spectrum, which occurs at the point

(35)

VS

where S, » 2218 2

f

with coordinates (k =0,w» 0.123w; )

A way to check whether the upper cut-off frequency is correct for practical purposes
IS to make use of Eq. (30) as follows

ku
& S(k,w,)ok » S(w,) w, =0,...,w, (36)
k=-k,
Once the cut-offs are determined, the discrete wavenumber and frequency are given
by
k, = jDk j=0,..,M-1 with M3 2]
w,=nDw n=0,...,,L-1 with L32N
where M and L are powers of 2, and Jand N are also powers of 2, such that J is
greater or equal than the number of points for the discretization in space of the field
(number of sites where the field is needed) and N is greater or equal than the number
of points for the discretization in time of the field (number of points in the time
histories). Notethat JDk =k, and N Dw =w,,.
Eqg. (26) can be rewritten so to allow the utilization of the FFT method, as

(37)

N

@ 0 é . o LIN-L T U
féxr s - X :: '\ERG@G WX /Vapp}: 4 aa i[s(kj ,Wn)D(DW Zelf in gethprJ/M e 2psn/L§l:I (38)
Vapp g g fh=21j=0n=0! bt




in which:

2p
=rDx=r r=0..,M-1
% M Dk
; 39)
t, = sDt = s—=> $=0,...,L-1
L Dw

The two-dimensional FFT is to be applied to the term in the braces in Eq. (38). Due
to the presence of h =+1, a forward-forward FFT and a backward-forward FFT are
to be performed.

A different discretization scheme can be used (for ex., Zerva 1992) with:
K =(j +%)Dk and w, =(n +%bw in order to obtain ergodicity in the mean.
However, in this case the simulations obtained by means of Eq. (38) are already
ergodic in the mean, because the value of the F-K spectrum at the origin
(k =0,w= O) is zero (Shinozouka 1972), therefore the discretization in Eg. (39) can
be used.

As alast remark, note that the period of the simulationsis

2P _ _
To=5 =Lt N D=ty (40)

that is, it is aways longer or equal to the duration of the generated motion.

In order to account for the nonstationary nature of ground accelerations, the
stationary time histories generated by means of Eq. (38) are modulated by means of
an envelope function. The function chosen in this study is:

.2
2(t) =22 for O£t£t,
g
z(t)=1 for t, £t£L, (41)
z(t):expi b 7

Anb for to £LE t5
M lmax - E
where t,, t, = ramp duration and decay starting time, respectively, t . =time history
duration and b = ratio of the amplitude envelope at t, ., to that during the stationary
phase (t1£t £t2). Inthiswork: t, =2 sec, t, =14 sec, t,,,, =20 sec and b = 0.25.
Velocity and displacement histories, which are needed in a multi-support
analysis, are obtained by integration of the acceleration histories according to a
method known as baseline correction (Jennings et al. 1969), which minimizes the
errors introduced in the numerical integration when passing from accelerations to
velocities and displacements.
Figure 3.2 compares the auto-spectrum (left) and the autocorrelation function
(right) of the simulations of Eqg. 38) with the target spectrum in Eg. (7) and the
target autocorrelation function for soil types F and M. The number of simulations



performed was 70. It is seen that both the generated PSD and the generated
autocorrelation practically coincide with the target PSD and autocorrelation.
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Figure 3.2. Target and simulated PSD (left) and autocorrelation (right)
for soil types F and M.

Figure 3.3 compares the coherency functions of the simulations with the
target coherency functions at different stations having separation distance d=50, 100,
150, 200, 250 and 300 m (note that in the figures x stands for d) and for two values

of the parameter vg/a = 300 and 600 nV/s. Also in this case 70 simulations were

performed. It should be observed that for both values of the parameter vg/a the
agreement is satisfactory.
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Figure 3.3. Target and simulated coherency functions
at different stations at distance X for V / a = 300 (left) and 600 nVs (right).

3.1.2 Conventional bridges

The purpose of the study presented in this section is to gain insight precisely
into this question: the relevance of nortrigid input motion on the peak inelastic
response of bridge structures, and the extent of validity of the “g-factor” approach.



It consists of a parametric analysis having a sufficient, although far from
exhaustive, width of scope, whose essential elements are outlined here and described
in full detail subsequently. Three bridge types are considered: they all have 6 spans,
of 50 m length each; the superstructure is the same in al cases, while the (uniform)
heights of the piers take the values of 7.5, 10 and 15 m.

The soil motion is characterized by two different power spectral densities (the
same at al stations in each case, therefore no site response is included), while the
parameters controlling the loss of coherence have been made to vary between their
respective extremes. Finaly, the design of the piers has been made for three different
values of the behavior factor and according to two strategies, i.e., either accounting
for the non-synchronism of the input or neglecting it.

3.1.2.1 Design of bridges

The bridge under consideration is represented in Figure 3.4. It is a 6span
continuous deck with 5 piers of the same height H and of 2.5 m diameter. The span
length is 50.0 m. The deck, transversely hinged to the piers and the abutments, has a
dead load of 200 kN/m. The piers (acting as cantilevers) are considered as fixed on
the soil.

B 300 m .
\_{I_ol S 5] 2 I} oII
|:| H |:| ‘[‘ 50 m l 2.5m
1 2 3 4 5

Figure 3.4. Schematic view of the bridge.

All the analyses of the bridge have been performed in transverse direction.
The design peak ground acceleration (PGA) has been taken as: 0429/, where g =
behavior factor.

Table 3.1. Values considered in the parametric study.

Parameter Values

Soil type Firm (F) Medium (M)
Pier height H (m) 7.50 10.00 15.00
Behavior factor g 2 4 6
v./a (mis) 300 600 ¥
Vo (MIS) 300 600 1200 ¥




The parameters considered in the study are: a) the soil type, b) the structure
stiffness, represented by the piers height H, c¢) the design level, given by the
behavior factor: q, and d) the coherency parameters: v,/a and Vap - 1he numerical

values assigned to the above parameters are indicated in Table 3.1.

The choice regarding the soil type affects the values of the parameters in the
PSD function in Eqg. 7. The values adopted are obtained from Egs. (17) and (18) and
are listed in Table 3.2 for each type of soil.

Table 3.2. PSD filter parameters for the soil types considered.

Soil type W, (rad/sec) Z, W, (rad/sec) Z,
Firm (F) 15.0 0.6 1.5 0.6
Medium (M) 10.0 0.4 1.0 0.6

The three different pier heights are intended to produce three different
degrees of bridge stiffness and have been chosen so as to get bridges with
fundamental periods varying within rather large limits. The first three periods of
vibration are listed in Table 3.3.

Table 3.3. Periods of vibration of the bridges.

Period H=750m [ H=1000m | H=1500 m
T, (sec) 0.43 0.60 1.20
T, (sec) 0.40 0.57 0.84
T; (sec) 0.33 0.41 0.48

The bridges ave been designed elastically for non-synchronous as well as
synchronous ground motion using accelerograms generated according to Eq. @8).
The design has been made for the average of the maximum values of the response
(bending moments and shear a the pier base) obtained using ten sets of
accelerograms scaled according to Eg. ©) to a PGA of 0.42 g, divided by the
behavior factor g. In these analyses, the piers cracked stiffness has been used,
obtained fom the uncracked stiffness (gross section) divided by a factor 2.5. No
minimum reinforcement ratio was considered. The following material strengths have
been used: for concrete f, = 35000 kPa, for steel f, = 440,000 kPa, with ultimate

strainsequal to €, = 0.008 and e , = 010, respectively. Material design factors were:
1.5 for concrete and 1.15 for stedl.



By combining al the values of the parametersin Table 3.1 above, 216 cases
resulted. Among those ae the 18 bridges designed under synchronous soil motion
(v.,/a =¥ and Vap = ¥ ), corresponding to the usua design assumption adopted in
engineering practice.

Both linear analyses (for design) and nonlinear analyses (for verifications)
have been carried out through step-by-step integration by means of the program
ASPIDEA (Giannini et a. 1992), where each pier is modeled with two elements in
series: a Takeda-type plastic hinge zone at the lower support, having fixed length
equal to one-tenth of the pier height, and the remaining elastic part of the pier, whose
flexibility is doubled to account for cracking.

3.1.2.2 Elastic response

It is known, (see for ex., Clough and Penzien 1975), that the response of an
elastic structure subjected to non-synchronous input can be obtained from the
superposition of two contributions: a dynamic component induced by the inertia
forces and a so-called pseudo-static component, due to the differences in the support
displacements. These latter can induce significant distortions in the structure thus
modifying the internal forces with respect to the case of synchronous input. The two
components can be synthetically represented at each time step by means of two
values. the mean ground displacement under the supports, which corresponds to a
rigid body motion of the structure and can be partly identified with the dynamic
component, and the ground displacements standard deviation, which can be
considered as representative of the pseudo-static distortion imposed to the sructure.
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Figure 3.5. Mean and standard deviation of ground displacements on soil F (left) and M (right).



In Figure 3.5 the maxima of the two values attained during the ground
displacement history are presented for soil types F and M and with values
v, /a =300,600 and ¥ m/s for the geometric incoherence term. In each diagram four
distributions corresponding to different values of the apparent velocity of waves
Vap =300,600,1200 and ¥ m/s (wave-passage effect) are represented. It should be

kept in mind while observing Figure 3.5 and the following ones that geometric
incoherence (i.e. that ruled by the first term in Eq. 3) decreases as V. /a increases
from 300 m/sto # m/s. In each diagram the wave-passage delay (i.e. that ruled by

the second term in Eq. 3) decreases as v,,, increasesfrom 300 to ¥ m/s.
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Figure 3.6. Bridge H=10.0 mon soil F. Total and static forces
for v /a = 300 m/s (top), V, /@ = 600 m/s (middle), and V, /@ =¥ n/s (bottom).
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Figure 3.7. Bridge H=10.0 mon soil M. Total and static forces
for Vi, /a = 300 m/s (top), V, /@ = 600 m/s (middle), and Vi, /@ = ¥ ms (bottom).

For soil F an evident phenomenon is the sensible reduction of the mean
displacement for increasing geometric incoherence, therefore we expect a reduction
of the dynamic component as v, /a decreasesfrom # m/sto 300 m/s. For soil M this
is less evident and we rather expect an increase of the dynamic component when
Va4 = 300 m/s. For both soils a remarkable increase of standard deviation is observed

as v, /a decreases but this phenomenon is less evident as v,,, decreases from £ to

300 m/s. Therefore, high pseudo-static distortions are expected either for low values
of v,/a or,if v,/a =¥, for low values of v,. Note that in &l cases the variation of



V,p has anotable effect only for v, /a =¥, while in the presence of a certain degree

of geometric incoherence its effect is sensibly reduced.

In Figure 3.6 and Figure 3.7, at left, are the envelopes of the maximum total
shear forces acting on each pier derived from nonsynchronous linear dynamic
analyses, while at right are the envelopes of the maximum pseudo-static component
of the shear forces, derived from linear static analyses by applying the displacement
histories at the pier supports. The results are presented for the bridge with
H =10.00 m only, but the comments made in the following apply aso to the bridges
with H =750 and 15.00 m which show similar force distributions.

We comment first the total force distributions (left-side diagrams) to evaluate
the effects of geometric and wave-passage incoherence on the bridge response. The
extreme cases are those with maximum incoference v, /a =300 m/s and v,,, = 300

m/s (dashed lines in Figure 3.6 and Figure 3.7, top) and those with perfect coherence
corresponding to the synchronous support motion cases (solid lines in Figure 3.6 and
Figure 3.7, bottom).

For these latter cases it should be observed that the total shear force
distribution follows essentially the shape of the first mode of vibration of the bridge.
In the other @ses it is seen that for increasing incoherence (decreasing values of
v,/a and Vo) the responses show a flattened shape, thus suggesting that higher

modes are excited by multi-support input.

A first important effect that @an be noted by comparing the cases of fully
synchronous input (solid lines in Figure 3.6 and Figure 3.7, bottom) with all other
cases in which some degree of uncorrelation of geometric nature is present (al lines
in Figure 3.6 and Figure 3.7, top and middle) is that the synchronous forces are
systematically larger, although to different degrees. If confirmed by nonlinear
analyses, this fact would be comforting, since t would mean that bridges designed
disregarding the multi-support excitation (as in the usual practice) would be
automatically covered against non-synchronous effects.

For the case of incoherence due to wave-travelling alone EFigure 3.6 and
Figure 3.7, bottom), a reduction of the forces in the central pier is observed, whereas
the forces acting on the lateral piers are increased with respect to the synchronous
case (solid lines). Only when the wave-passage delay becomes large (v,,, = 300 m/s)

there is a substantial reduction in the forces for al the piers. In the presence of
incoherence due to wave-passage alone, a clear directionality in the response is
observed. This phenomenon is aready triggered for v,,, = 1200 m/s, that is for trains
of waves arriving at two consecutive supports with a time delay of only 4/100
seconds, and it is due to the fact that the second term in Eq. 3 depends on the sign of
the separation distance x . Since the first term describing the geometric incoherence
effect is independent of the sign of x, when it increases the response distribution
tends to be more symmetric.

The possibility of coincident resonance, i.e. a phase-matching between the
excitation wave and the natural wave in the structure (Lin et al. 1990), was not



investigated, because this phenomenon occurs only for the case of wave-travelling
incoherence, and it is beyond doubt that in many situations geometric incoherence is
a more credible source of uncorrelation than that due to deterministic wave-
travelling.

A confirmation of this and of what aready observed in Figure 3.5, is that the
response to multi-support excitation is not significantly influenced by the wave-
passage effect when high geometric incoherence (low values of v,/a) is present: the
left-side diagrams in Figure 3.6 and Figure 3.7, top and middle, show essentialy the
same force distributions for different values of v,, . As dready remarked in the

comments to Eqg. 3, thisis mainly due to the fact that the term containing v, /a in the
coherence function is squared.

In comparing the left-side diagrams (total shear forces) with the right-side
ones (pseudo-static shear forces) a first obvious observation is that in the cases of
synchronous or nearly synchronous seismic motion the contribution of the pseudo-
static component (right side diagrams in Figure 3.6 and Figure 3.7, bottom) is zero or
negligible, since synchronous seismic input by definition does not introduce
distortionsin the piers.

It is seen that the contribution of the pseudo-static component to the total
shear force becomes more and more significant as the geometric incoherence
increases. For the lowest value considered of v,/a =300 m/s (Figure 3.6 and Figure
3.7, top) the pseudo-static forces are about 50-80% of the total forces for the mid pier
and about 80-100% for the lateral piers. In these cases, i.e. when the geometric
incoherence is high, the effect of the other component is almost negligible. On the
other hand, when the wave-passage delay only is present (Figure 3.6 and Figure 3.7,
bottom), its effect remains very low for v,,, =1200 m/s (less than 1% for the mid

pier) and low up to v,,, = 600 m/s (25-50% for the mid pier).
An unexpected behavior occurs for v,, = 300 m/s, where the pseudo-static

component is greater than the total shear force (about 200% for the latera piers). In
these latter cases the contribution of the dynamic forces reduces the effect of the
distortions introduced in the structure by the nonsynchronous soil displacements.
This fact is physically explainable, since the maxima of the two components do not
necessarily occur in phase.

As a finad remark, for low vaues of the geometric incoherence .g. for
v,/a =¥ m/s, Figure 3.6 and Figure 3.7, bottom) the wave-passage delay tends to
decrease the total shear forces on the piers, while it tends to increase the pseudo-
static components. The opposite occurs for high values of the geometric incoherence
(e.g. for v,/a =300 m/s, Figure 3.6 and Figure 3.7, top).



3.1.2.3 Non linear response of bridges to multi-support excitation

Non linear analyses of bridges designed either accounting for multi-support
excitation or neglecting it have been carried out under the same ground motion
histories used for nonsynchronous design, with PGA = 0.42g9. The results are
presented in the following.

3.1.2.4 Bridges with non-synchronous design
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Figure 3.8. Bridge H=7.5 mon soil F and M. Required ductility
for Vi, /@ = 300 m/s (top), V, /@ = 600 m/s (middle) andV, /@ = ¥ /s (bottom).
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Figure 3.9. Bridge H=10.0 mon soil F and M. Required ductility
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In Figure 3.8 and Figure 3.9 the results are presented in terms of required
displacement ductility for the bridges with H =75 and 100 m only, on soil types F
and M with values v, /a = 300,600 and ¥ s for the geometric incoherence term. In
each diagram, for each value of the structure behavior factor g= 2, 4 and 6 adopted in
the design, three curves obtained for v, =300,600 and ¥ m/s (the wave-passage
effect) are represented. For the sake of clarity, the curves relative to v,,, =1200 m/s

are not represented.



As a genera comment, one has to observe that the correlation between g-
factors and requested ductility is reasonably good, at least for the central piers.

A first important point to note is that bridges designed for multi-support
excitation show relatively uniform displacement ductility demands to the different
piers, at least for the lower two values of g. This is not exactly what inelastic
analyses usually reveal for bridges designed with arigid base motion, and this can be
checked for in Figure 3.8 and Figure 3.9, bottom, where the solid lines represent the
bridges designed for synchronous inpuit.

A second point of systematic nature that goes together with the one
previousy mentioned is a noticeable trend to increase the ductility demand in the
lateral piers with increasing uncorrelation of the motions, especially when this is of
the geometric type and for higher values of the g-factor. To check this, compare for
example the top Figures with the bottom ones in Figure 3.8 and Figure 3.9. On the
other hand, when the geometric uncorrelation is high, in most cases the contribution
to the ductility demand of the other source is amost negligible, a fact which was
aready noted in terms of forces in the linear case.

This result can be explained by looking at the diagrams obtained from the
linear analyses shown in the preceding paragraph, where the pseudo-static
component of the shear force is compared to the total shear force acting on the piers.
In case of high geometric incoherence, the shear forces on the piers are primarily due
to the motions at the supports, which are imposed pseudo-statically, while the
dynamic response component is very low. Thus, the design forces result to a large
extent from the pseudo-static forces, deriving from a ground motion affected by the
g-factor. When analyzing the bridge in the nonlinear field, the pseudo-static
displacements imposed at the supports are g times those adopted in the design and
therefore they produce a request of ductility in the piers which is very closeto gq. The
remaining part of the displacement of the piers derives from the dynamic response of
the bridge. For low that this latter can be, the required ductility can only further
increase. For example, in the bridge with H =75 m on soil M and v, /a=300 m/s the
required displacement ductility in the piers designed with g=2, 4, and 6 is about 2, 4
and 7, respectively.

When the pseudo-static component is only a small part of the total force
(cases with v,/a =¥, Figure 3.8 and Figure 3.9, bottom), the request of ductility
depends on the dynamic response of the bridge which is obviously conditioned by its
geometrical and mechanical characteristics. For the cases considered in this study,
the effect of v,,, becomes significant as soon as it takes on lower values (v,,,= 1200

(not shown) and 600 m/s), in which cases it is also accompanied by the already noted
directionality effect. This effect tends systematically to extract a larger amount of
ductility from the last encountered piers.

In concluding this section, it appears that the g-factor approach can be
extended to nonsynchronous design, with a degree of accuracy which is often better
than for synchronous design. More explicitly, it has been found that bridges designed
elastically for a non-synchronous input of given stochastic properties and affected by



ag-factor, if analyzed inelastically for the same non-synchronous motion withqg = 1,
exhibit displacement ductility demands which are in good accordance with the
selected value of g. It has been shown that this depends on the notable reduction of
the dynamic response component with respect to the pseudostatic one.

3.1.2.5 Bridgeswith synchronous design

This section tries to provide an answer to the following question: what
happens to bridges designed for a rigid input motion in case they are subjected to
motions having the same frequency content but varying types and amounts of
correlation between the support points?
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As in the previous section, the results are presented in terms of required
displacement ductility. The results of bridges with H=7.5 and 10.0 m only are
presented, on soil types F and M with values v,/a =300,600 and¥ m/s for the
geometric incoherence term. In each diagram, for each value of the behavior factor
q=2, 4 and 6 adopted in the design, three curves obtained for v,, =300,600 and ¥

m/s (the wave-passage effect) are represented. Also in this case, for the sake of
clarity, the curves relative to v,,, =1200 m/s are not represented.



We first comment on the top Figure 3.10 and Figure 3.11, i.e, the ones
containing the cases of largest geometric uncorrelation. We know from the previous
section that the response is due mainly, when not exclusively, to the imposed pseudo-
static differential displacements at the piers bases. Wave propagation effects are
irrelevant in this case. The results in Figure 3.10 and Figure 3.11, top, come to no
surprise: in the rigid base design the lateral piers are subjected to lower forces than
the central ones, and are consequently weaker. Since the soil displacements are such
as to impose almost equa distortions to all piers, the weakest ones are called to
greater ductility demands. This leads to the situation illustrated in the Figure 3.10 and
Figure 3.11, top, where the central piers have ductilities of about half of g, while for
the lateral ones the values are close to q.

The second extreme situation is when geometric incoherence is absent and the
lack of correlation is only due to wave propagation (see Figure 3.10 and Figure 3.11,
bottom). In this case we observe, as in the previous section, a significant sensitivity
of the results to the parameter v, , for agiven value of g.

Overal, however, in amost all cases the presence of a certain amount of
incoherence acts towards reducing the ductility demand in the central piers and
increasing that in the lateral ones, with respect to the limit case of synchronous
motion. This fact is significantly corroborated for the higher values of g. In any case,
the values of the requested ductilities are still quite close to the selected values of q.

In concluding this section it appears that designing for a rigid motion
provides the bridge with a higher global strength than for a non-synchronous mation.
Therequest of ductility is not as uniform among the various piers as observed for the
bridges designed for multi-support excitation, but the values are well below the
selected g-factors, with the only exception of a few sporadic cases. This amount of
strength is enough to cope with the possibility of receiving a non-synchronous
motion. The only exception has been observed for the lateral piers in the bridge with
H=7.5 m, for which the rigid base assumption adopted in the design leads to a
request of ductility closeto the g-factor.

3.1.2.6 Conclusions regarding conventional bridges

The essential facts emerging from the study are easier to express than it might
be supposed from the multiplicity of different cases that have been examined in the
previous sections. It al descends from the model that has been assumed for
describing spatia variability. In this model, the power density correlation function is
the product of two terms. The first one, which rests on qualitative physical bases,
uncorrelates the motions at different points exponentially with the product:

w d; / |G/r , where G and r are the shear modulus and the density of the soil,

respectively. The second one represents the correlation between two generic points
smply dueto atimelag d; /vapp in the arrival of the waves.

Once v, fixed, samples taken from the stochastic field represented by the
second term only would be trains of waves travelling with the same speed and



differing from one to another by random phase angles only. Roughly speaking, the
second term has somewhat the nature of a deterministic model, whose effects on a
given bridge structure can, at least qualitatively, be anticipated. Incidentaly, it is the
only term usually considered in the design of pipelines. The first one, on the

contrary, is of purely stochastic nature: when w d; / A /G/r takes on large values the

motions at two points become statistically uncorrelated (and, given the implicit
assumption of gaussianity, also independent), so that at a given instant in time the
two motions might hypothetically be the same but opposite in sign.

Adhering to the recommendations contained in several modern bridge codes,
to consider spatia variability of ground motions in the case of long bridges, three
representative bridge models have been selected and designed for spatial variability,
assuming a variety of combinations for the absolute and relative importance of the
two terms of the coherence function, for a total of 216 cases. The designs have been
made elastically, for different values of the g-factor.

The first question a bridge designer would probably like to ask is whether
accounting for spatial variability leads to larger amounts of reinforcement, for a
given value of @, than what one would ddtain by ignoring it. The analyses made
allow to answer to this question both in global terms as well as with more articulate
distinctions. In global terms, it has been found that incoherent motions lead to a
decrease of the design forces, hence to lower anounts of reinforcements, with
respect to the synchronous ones. This result admits no exceptions, for the cases
considered.

Obvioudly, the amount of the decrease is very variable, depending on the
particular combination of the parameters and, given these latter, it varies from pier to
pier, with a systematic trend to be larger for the central piers and practically nihil for
the lateral ones.

In more detailed terms, it is of interest to discern the role played by each of
the two components of the coherence unction. When the motions (accelerations)
input to the supports are (almost) independent (i.e. the first term is dominant), the net
dynamic excitation tends to zero. In this case the response becomes of purely static
nature, and it is due to the differentia displacements of the ground at the supports.
Since the motions are already uncorrelated, the effects of the second term are
negligible, whatever its value may be. The amplitude of the differential
displacements and, hence, of the forces induced in a given structure, is directly
related to the assumed shape of the power density spectrum of the ground motion.

When the first source of incoherence is absent, on the other hand, the degree
of uncorrelation produced by wave travelling is rather limited, for the range of
apparent velocities one would consider more frequently (say, in excess of 500 m/s),
and the effect on the response consists essentialy in a reduction of the dynamic part
due to the incomplete synchronism of the excitation. It requires to have very low
vaues of v, in order to start seeing significant effects of relative displacements

between the supports, but in this case we assist dso to a significant reduction of the
dynamic contribution to the response.



After having looked into the nature of the effects of spatial variability, and
having designed a number of bridges for these effects, it is all too natural to check
whether the inelastic response is consistent with the expectation that ductility
demands are of the same order of the g-values used for the design.

Here again there could be an answer in global terms, that would be outright
positive, even more favorable than what one is accustomed to accept in the case of
rigid motion design, and one with finer distinctions. To limit these latter to the
essential, one might say that the ductility demand gets closer to g when the
uncorrelation of the motions due to the first term increases. There is a simple
physical explanation for that, not worth to be repeated here, especialy since beyond
this due verification of the validity of the g-factor approach for nonsynchronous
excitation there is still a major issue ahead to be discussed.

At the design stage, the quantification of the spatial variability cannot be but
affected by alarge degree of uncertainty. It is true that uncertainty is also large in the
prediction of the local frequency content of the motion, but this aspect is covered in
most cases by the codes, which in turn rely on large amounts of statistical
information, so that the spectral shapes can be reasonably accepted as conservatives
estimates of “uniform risk” functionals. On the other hand, no “envelope” concepts
can be applied to the quantification of the degree of correlation: at most one might
consider upper and lower estimates. But the chances that the future earthquakes will
be characterized by the amount and type of correlation assumed in design are really
dlight. In the light of this basic uncertainty, what is the appropriate procedure for
ensuring an adequate degree of reliability to the design?

Excluding any attempt to sophisticated approaches, whose reaches in this
specific case appear as limited, the problem has been posed in the following terms.
Since it would not be sensible to design for spatial variability and then to check the
design for the case of a synchronous earthquake, which is clearly an abstraction, the
reverse has been made, i.e., to design for the abstraction, which means following
consolidated practice, and then see if and how large inadequacies of under- or over-
design this practice involves.

The results of this last part of the study have been illustrated and commented
in the appropriate section. They are summarized again since they might be assumed
as the conclusion of the whole study: designing for a rigid motion provides a global
upper bound of the response and therefore a globally conservative design. There is
difference, however, between the rigid and nonrigid design in how the strengths are
distributed among the different elements. In the rigid case, the distribution follows
essentialy the shape of the dominant mode, while in the other one, the strength
requirements tend to be uniform.

It is difficult at this point to resist the temptation of offering some practical
suggestion, even if thisis beyond the intentions and especially the reach of the study
performed. The fact could be noted, however, that the higher the selected g-factor,
the larger the difference between the requested ductility in the lateral and the central
piers, when uncorrelation of motion is present. In those cases, in order to obtain a
uniform request of ductility in all the piers, it would be beneficial to halve the design



forces in the central piers, which always show a ductility request of about 0.5 under
multi-support excitation.

It is understood that the results obtained in this study are strictly dependent on
the extremely regular bridge configuration examined and on the model describing the
gpatial variability of the seismic motion. Additiona investigations are needed to
study the response of irregular bridges with piers of different heights under non
synchronous seismic action modeled with different coherence functions.

3.1.3 Isolated bridges

For the case of isolated bridges, present design practice is based on a linear
analysis, where the protection offered by the nonlinear behavior of the isolators is
globally accounted for by means of a simple factor. In principle, there is no evidence
that this approach may extend its validity to non-synchronous situations, or at least
not with the same protection factors. Thus, the purpose of this section is to make a
further step into this question: the relevance of nonrigid input motion on the
inelastic response of isolated bridge structures, and the extent of validity of the
“protection factor” approach.

A parametric analysis has been conducted of a bridge with 6 spans, of 50 m
length each and piers 10 m tall, same as that analyzed in section 3.1.2 and
represented in Figure 3.4, but in this case it is equipped with isolators that are
designed according to common design practice. The bridge is subsequently analyzed
under different multi-support excitation conditions. The method employed is that of a
stationary random vibration analysis where the nonlinear isolators are linearized
with Kelvin elements, having effective stiffness and equivalent damping determined
through an equivalence equation. To this purpose, the accuracy of three different
eguations is evaluated.

The soil motion is represented through a second moment random field fully
characterized by (equal or different) power spectral densities at each station and by a
coherence spectrum, assumed to depend on three different sources of incoherence.
All the parameters controlling the loss of coherence have been made to vary between
their respective extremes, as done in section 3.1.2 and reported in Table 3.1.

3.1.3.1 Bridge model and equivalent stiffness and damping ratio of the isolator

The bridge is modeled as an elastic system, where both the piers and the
isolators are considered as elastic. As regards the piers, this assumption isvalid if the
adopted procedure for the design of the isolators is such to maintain them in the
elastic range, whereas the isolators, which of course enter well into the inelastic
range, are represented through equivalent linear elements whose hysteretic damping
is condensed into a viscous damping ratio. Both these quantities can be expressed as
function of the required ductility.

The equivalent stiffness kg, ; and the damping ratio X ; of the j=1..N
isolators, equivalent to their hysteretic dissipation can be evaluated according to



different criteria. Three are selected in this work, based on kg = isolator elastic
stiffnessand a = isolator hardening ratio:
a) the first one is that adopted in AASHTO (Guide specification 1991)

) 1+a(n; - 1) L .2 (1_- a)(r'rj - 1)“

(42)

eq,j ~ KE m eq’j_pmj[1+a(mj-1)J
b) the second one is that presented in (Hwang et al. 1995)
Keg,j =K W%ﬁ 07370~ 10 Xy | =2 (2 a)(mj - 1)_ ™ 43)
€q, E m, g . rTf 5 €q, | pmjl_]-"'a(mj-l)lﬁ-lOa

c) the third one is that presented in (Hwang et al. 1994)
-2
Keg, :kE{1+In[1+ 0.13(mj -1 .137]} Xeq, :0.0587(mj i 1)0.371 (a4)

On passing, it should be observed that the first of the above equations is
obtained through simple geometrical considerations, while the other two have been
calibrated on the response of sdof oscillators: in particular, the secord one is just a
correction of the first one in order to maximize the accuracy in predicting the
inelastic maximum response of bi-linear elastic bearings, while the third one is based
on the optimal prediction of the period shift of a base-isolated regular bridge.

Note that the purpose of the equivalence is to substitute the hysteretic
isolators with equivalent Kelvin elements. A Kelvin element, a linear spring in
parallel with a pure viscous damper, satisfies the following equation:

fi =keqj Y tQ; ¥ (45)
which can be transformed in the frequency domain as follows:
£ (i) = keg,j +icow) y(iw) (46)

Its transfer function from deformation y to force f is therefore:

Hj(iw):kequ +iCo W= Ky | +12Xeq, jKeq, | (47)

where the real and the imaginary parts are the non-negative real- valued storage and
loss moduli, respectively. This representation will be used in the following
developments.

3.1.3.2 Equations of motion of the bridge

The equation of motions for the deck (subscript D) masses and the pier
(subscript P) masses with the interposed isolators (subscript 1) are, respectively:

Mp(Xp+X, +0)+Cp(Xp +X, +U)+Kp(Xp +X, +U)+C, (X, )+K,(X,)=0
MpKp+0)+Cp(Xp)+Kp(Xp)- C (X, )- K, (X;)=0 (48)



where K| =diag; (kequ ) Eq. (48) can be written in matrix form as:

Mp MpulX, u eCD+C| CpulX,u EKD+KI KDUIX|U

é Wl aX

o MPUIXPE/) C CPUIXPF\; K KPlepg

) 100 (49)
Mp Cp >%U

€ 0 OU y

eMP IUIp

If it is assumed that: @) the contribution to the overall damping given by
CpXX|, Cp X p and CpxXp is negligible with respect to that of the isolators
C, XX, ; b) Cp»U can be neglected with respect to the other quantities on the left-
hand side of the equation. Thus, the resulting equations are:

d\/lD MDu|Xu éC, OulX,u d(D+K| KpUiX;d_
gX & Tl
g0 MPU|X% C OUIXE - Ky KPleg

Mp KpuiUl
= . = k /
g Nl
The advantage of casting the equation in this form, rather than the more
classica version in (Clough and Penzien 1975) where a dynamic and a pseudo-static
part are separately solved and subsequently added up, stems from the fact that thisis
computationally of great convenience, since it alows to directly obtain the
expression of the PSD matrix of the isolators response, instead of deriving it as PSD
of a sum process, where also the cross PSDs between the dynamic and the pseudo-
static process must be evaluated.
The whole problem can then be stated as:

(50)

MX+CX+K X=pU+kU=F (51)

3.1.3.3 Response of theisolators

Using elementary notions of stationary random vibration theory, the matrix of
the response PSD is obtained by filtering the cross-PSD matrix Sgr (W) of the action

F with the frequency response matrix H yx (iw) of the system

Sxx (W)= H x (iw) Sge (W) HY (- iw) (52)
where the first N values on the diagonal are the auto-PSD of the isolators.
The cross-PSD matrix Spr (W) in (52) is obtained from the cross-correlation

matrix of the action F:

Ree (t)=uRyg u' +kRyy kT +uRyy kT +kRyy 1’ (53)



which is then Fourier-transformed into the cross-PSD matrix
Ser (W) =Sy HT +kSyy kT +uSyy kT +kSyg H'
1 1
=HSyg K +stuu k' +F(}Jsuu kT +kSyy HT)

(where in the above equation therelation §,;, = SJO/WZ has been used).

The frequency response matrix H X(iw) in ®2) can be obtained from the
modal frequency response (diagonal) matrix

(54)

7 R i N _ 1\
H., (iw) = diag, gwﬁ - WP+ 2|XkaW) : (55)

H
where W, is the circular frequency of the k-th mode and X, the associated modal
damping. The frequency response matrix H Z(iw) is transformed into the frequency
response matrix H y (iw) through the eigenmatrices of the system (51), which implies

that an eigenproblem has to be solved.

Before solving the eigenproblem, it should be noticed that the matrices M and
K in (51) are non-symmetrical. In this case, it is convenient to cast the equation in
the following form:

X+MIcX+M K X=M"1F (56)

Thus, modal decomposition can be performed of the (assumed classically
damped) eigenproblem

M XKF=FL (57)

whose solution is the eigenvalues matrix L =diagk(\7v§) and the couple of

eigenmatrices. the right-hand eigenmatrix F , and the left-hand eigenmatrix F , for

which the following relation holds: F|| =F 1.

3.1.3.4 Treatment of damping
The eguations of motion can be uncoupled by writing X =F Z

7+F WM ICFZ+F M K FZ=F M u0+ku)=Y (58)
where it is noted that the modal damping matrix C=F M ICF =F CF (where

Fl=F M 1=FM! is the massnormalized left-hand eigenmatrix) is not
diagonal, therefore the equations are not completely uncoupled. An analysis of the
error resulting from neglecting the off-diagonal terms can be found in (Veletsos and
Ventura 1986) where it is shown that for modal damping ratios lower than 30% the
error is acceptable, if not negligible.

Under this consideration, the modal damping ratios are obtained as
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where the damping matrix C(\Tvk) is built for each eigenvalue as follows (Zambrano
et al. 1996):

am(H o 8oy iKeq i 0
C(W, ) = diag ; &—— jzdiag-hw;’ %1z (60)
Jé Wk g J W g
where the numerator is the imaginary part of the transfer function @7) of the j-th

isolator.
With the values of the modal damping ratios in §9) the modal frequency

response matrix H (iw) in (55) can be built and then transformed into the frequency
response matrix H y (iw)

Hy (iw)=F H (iw)F[ (61)
This expression, along with that of the cross-PSD of the action in (54), can be
inserted into (52) to get the PSD matrix of the response.

3.1.3.5 Iterative procedure

The response of the bridge depends on the isolator stiffness and damping.
Since this is evaluated with either (42) or 43) or (44) as function of the ductility
required to the isolators, which in turn depends on the isolators characteristics, an
iterative procedure must be followed. This can be summarized as follows:

1) Guess vaue for the required ductility n; inal j=1..N isolators along the
bridge (usually, n;=1)

2) Calculate the vector of the variances of the response of each isolator through (52)
(that is, only the first N values on the diagonal need to be evaluated, since they
are the auto-PSD of the isolators)

¥
sZox =Var[Xis k= 0, Sk W)W k=1.N (62)
3) Update the vector of the required ductility in each isolator
> S
m = Bk k=1..N (63)
Xy.k

where p is a peak factor taken as 2.5.
4) Compare the ductilities with the current value: if convergence is attained then
exit, else repeat procedure with the new estimate of ductilities.



3.1.3.6 Design of the isolated bridge

The bridge under consideration is represented in Figure 3.4 (in this case the
hinges on top of the piers are replaced by isolators), purposely selected equal to that
extensively studied in section 3.1.2. The piers height has been taken H= 10 m. The
deck, transversely supported by isolators to the piers and the abutments, has a dead
load of 200 kN/m. The piers (acting as cantilevers) are considered as fixed on the
soil. All analyses of the bridge have been performed in the transverse direction.

The isolated bridge has been designed elastically for the transverse direction
only, under synchronous ground motion (v,/a =¥ and v,,, =¥ ) which corresponds

to the usual design assumption adopted in engineering practice.

In the elastic analyses performed to design the bridges, the cracked stiffness
of the piers has been used, obtained from the uncracked stiffness (gross section)
divided by a factor 2.5. The following materia strengths have been used: for
concrete f, = 35000 kPa, for steel  f, = 440,000 kPa, with ultimate strains equa to
e, = 0008 and e, =010, respectively. Material design factors were: 1.5 for
concrete and 1.15 for steel.

The design has been made for the average of the maximum vaues of the

response (force at the pier top) obtained using ten sets of accelerograms scaled to a
PGA of 0.42 g. A protection level equal to nm= 4.2, which correspond to the design

PGA= 0.10 g, was considered. For the design phase, the deck was considered as
rigid, hinged on the piers and supported by rollers on the abutments.

The design criterion aimed at equally sharing the total shear force among all
the elements (piers and abutments), which basically imply that the same isolators are
used on all the piers and abutments and that all the piers have the same strength.

The design of the isolators is performed according to:

F
I:Y,iso = D.max (64)
m

where F, o, isthe isolator yield strength, Fp ., is the maximum force (average on
10 anayses) transmitted from the deck to the pier below, and mr is the reduction
factor of this force. The isolator stiffness is obtained as. K, =150°F,, which
basically assures that the isolator yield displacement is aways equal to 6 mm. The
isolator hardening ratio b was selected as b =b such that the hardening ratio of the
pier-isolator system be equal to b, = 0.10. Thevalue of b iseasily obtained from

1
— 21l 10 1
b=byg—+—3 *x— (65)
e
where K. is the stiffness of the pier considered as a cantilever. In the bridge

examined, the isolators hardening ratio turned out to be: b » 0.03.
The piers, of height H, are designed to satisfy the following inequality



My 2 H Ay, iso + Fp mac + ©Np + Nr D X0 (66)
where M, isthe resisting moment of the section at the pier base, Fp ., isthe base

shear due to the mass of the pier itself and of the pier top (which are under the
isolator), ¢ is a friction coefficient, taken equal to 0.03 (teflon bearings assumed),
N, is the load applied on the isolator by the supported deck, N; is the total load

(deck+pier) considered lumped at the pier top, D, IS the maximum displacement
(average on 10 analyses) at the pier top and g, =12 is an overstrength factor
recovering the uncertainties in the evauation of F g, ¢ and D,,. The

reinforcement ratio in al piers resulted equal to 2.07%. Such conservative design
procedure ensures that all the piers remain in the elastic range.

3.1.3.7 Results of the analyses

The bridge in Figure 3.4, whose isolators were designed with the above
described procedure, was analyzed through stationary random vibration analysis to
assess the effect of fully incoherent ground motion on the isolators response. In the
linear bridge model, al isolators are substituted with equivalent Kelvin elements,
with stiffness and damping proportional to the required ductility.

It is known, (see for ex., Clough and Penzien 1975), that the response of an
elastic structure subjected to nonsynchronous input can be obtained from the
superposition of two contributions: a dynamic component induced by the inertia
forces and a so-called pseudo-static component, due to the differences in the support
displacements. These latter can induce significant distortions in the structure thus
modifying the internal forces with respect to the case of synchronous input. The two
components can be represented at each time step by means of two values: the mean
ground displacement under the supports, which corresponds to a rigid body motion
of the structure and can be partly identified with the dynamic component, and the
ground displacements standard deviation, which can be considered as representative
of the pseudo-static distortion imposed to the structure. The ground displacements
for the three types of soils can be evaluated through (24) and considering that al the
analyses are performed under a PGA=0.42g: this corresponds to a PGD of 0.20 m,
0.50 m and 1.70 m for the soil types F, M and S, respectively. Since the latter value
appears unredistically high, it has been decided not to include the soil type S in the
analyses.

It should be kept in mind while observing the following figures that
geometric incoherence (i.e. that ruled by the first term in Eq. 3) decreases as v, /a
increases from 300 m/sto ¥ m/s. In each diagram the wave-passage delay (i.e. that
ruled by the second term in Eq. 3) decreases as the apparent velocity v, increases
from 300 to ¥ m/s

As reported in section 3.1.2, for soil F an evident phenomenon is the
significant reduction of the mean displacement for increasing geometric incoherence,
therefore we expect a reduction of the dynamic comporent as v, /a decreases from



¥ m/sto 300 m/s. For soil M thisisless evident and we rather expect an increase of
the dynamic component when v,,,,= 300 mV/s. For both soils a remarkable increase of

standard deviation is observed as v, /a decreases but this phenomenon is less evident
as V,,, decreases from * to 300 m/s. Therefore, high pseudo-static distortions are

expected either for low values of v /a or, if v,/a =¥, for low values of v,, . Note
that in all cases the variation of v, has a notable effect only for v,/a =¥, whilein

the presence of a certain degree of geometric incoherence its effect is sensibly
reduced.

A first task pursued was to assess the relevance on the ssmulated response of
the selected equivalence equation, either (42) or (43) or (44), referred to as:
AASHTO, Hwang and CALTRANS, respectively. In Figure 3.12 the adopted
equations are compared for two different hardening ratios. 0% and 3% (the
CALTRANS eguation is insengitive to the hardening ratio). It can be observed that
major differences exist in the estimation of the equivalent damping ratio, with
relative differences of the order of 300%, whereas for the effective stiffness ratio the
differences are less evident with the only exception of the CALTRANS equations,
which yields a lower stiffness reduction with increasing ductility.
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Figure 3.12. Isolator equivalent damping and stiffness ratios as function of the required ductility
according to Egs. 42 (AASHTO), 43 (Hwang) and 44 (CALTRANS),
with hardening ratio 0% and 3%.

In Figure 3.13, the response of the isolators, in terms of peak displacement
(where the peak factor is exactly computed), is represented for each of the above
equivalence equations, compared with Montecarlo ssimulations on 300 nonlinear
anayses. The benchmark cases considered are those on Firm and Medium soil, with
either fully coherent or low coherence ground motion, corresponding to vg/a and

Vapp €qual to infinity and 300 m/s, respectively. All the comparisons above are

conducted without accounting for the site response effect on the incoherence of the
ground motion, but it is deemed that the conclusions reached above can be extended
to the case of site response effect.



It is seen that in all cases the best approximation to the Montecarlo response
Is obtained with the CALTRANS equations but it is recognized that the accuracy
decreases with increasing incoherence. The weakness of the AASHTO equivalence
equations can be attributed to the fact that those are obtained through simple
geometrical considerations, whereas the other two equations are derived by
minimizing the RMS error of the inelastic maximum responses of sdof bi-linear
hysteretic isolators. The two equations have a satisfactory performance when the
bridge deforms according to the first modal shape, whereas they have a lower
accuracy for high incoherence. In the following analyses the equations (44) are
adopted to linearize the isolators.
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Figure 3.13. Validation of equivalence equations
42 (AASHTO), 43 (Hwang) and 44 (CALTRANS) for Firm (left) and Medium (right) soil
and with high (top) and low (bottom) coherence.

For the cases examined above, in Table 3.4 the equivalent damping ratios and
effective stiffnesses of the isolators are reported along with, in Table 3.5, the modal
damping ratio X, computed with (59), of the first four modal shapes, for the bridges

in full synchronism on soil types F and M (reference is therefore made to Figure
3.13, top). It is noted that the AASHTO and Hwang equations yield approximately
the same fundamental period, as expected because of the dight differences in the
estimation of the effective stiffness, whereas the periods computed with the



CALTRANS eguation are systematically lower. On the other hand, it is noted that
both the damping ratios of the single isolators and the modal ones are significantly
higher in the two former equations, while the latter gives rise to low damping ratios.
Thus, it can be said that the two former equations rely on the dissipation to predict
the peak response of the isolators, whereas the latter, with lower damping ratios,
relies on the stiffness

Table 3.4. Equivalent damping ratios with three different equival ence equations
(A=AASHTO, H=Hwang, C=CALTRANS) for full synchronism.

Equivalent damping (%) and
effective stiffness

Eq. | Soail 1 2 3
A | F | 36.4(40) | 41.2(.30) | 42.4 (.28)
H | F | 13.4(48) | 21.5(.25) | 25.7 (.18)
C| F 7.8 (.62) | 10.4 (.41) | 11.9 (.32)
A | M | 44.8(.19) | 44.4 (.14) | 44.0 (.13)
H | M| 251(19) | 30.8(.13) | 32.8 (.11)
C | M | 10.2(.43) | 14.1(.24) | 15.8 (.19)

Table 3.5. Modal damping ratios with three different equivalence equations
(A=AASHTO, H=Hwang, C=CALTRANS) for full synchronism.

Modal damping (%) and period (sec)

Eq. | Soil | Xq(Ty) Xa(T2) x3(Ts) X4(T4)
A | F | 41.6(0.75) | 32.0(0.63) | 24.1 (0.47) | 26.6 (0.38)
H | F |223(0.81) | 14.6 (0.62) | 9.0(0.45) | 7.9 (0.33)
C| F |122(0.68) | 9.2(057) | 6.7(0.43) | 6.7 (0.33)
A | M | 44.4(1.01)| 35.1(0.79) | 35.4 (0.59) | 34.9 (0.48)
H | M | 30.8(1.05) | 21.9(0.80) | 20.6 (0.61) | 18.9 (0.50)
C | M |153(0.82) | 10.8(0.64) | 7.2(0.46) | 7.0 (0.34)

After having chosen the modd to linearize the isolators, it is now possible to
consider the isolators response under different incoherence conditions. For the sake
of clarity, we recall that the overall phenomenon of multi-support excitation can be
split into two parts: one is the so-called non-synchronism effect, which are the two
effects of geometric incoherence and wave passage, the other is the site response
effect. In Figure 3.14 the isolators response with no site response effect is
represented, therefore only the case FFFFF and MMMMM are considered, that is,



soil type F and M under al supports. on the left, the response under perfectly
synchronous conditions is graphed, while on the right the effect of non-synchronism
IS represented.
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Figure 3.14. Isolator s response without site response effect:
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Figure 3.15. Isolators responses with varying site response effect:
one-step combinations (left) and three-step combinations (right) of Firm and Medium soil,
synchronous (top) and non-synchronous (bottom).



The nontsynchronous action has a twofold effect: one is to reduce the peak
response (which is more than halved for the case of soil F), the other is to break the
modal response, which in the first case is driven by the first modal shape, while in
the second becomes practically flat. It is therefore confirmed that nonsynchronism
has a favorable effect on the response of isolated bridges, as aready reported in
(Monti et al. 1995, 1996).

The consequences of the site response effect are depicted in Figure 3.15
where the effect of one-step and three-step variations are considered, for the case of
synchronism and nonsynchronism. Four different combinations between soil type F
(Firm) and M (Medium) are considered, denoted with the sequence of soil types
under the five piers of the bridge under consideration. One-step and three-step
combinations are considered, defined as a change in the soil type in the mid pier and
the three mid piers, respectively. It should be noted that for each combination, the
reciprocal is considered as well, that is, both FFMFF and MMFMM are studied.

From the diagrams, the following observations can be made:

when site effect is present, the response is only dlightly affected by non
synchronism; this essentialy confirms the deterministic nature of the site
response effect which implies the application of differential displacements at the
supports, as opposed to the non-synchronous part of the action, which implies
instead both a dynamic and a pseudo-static part,

the effect on the response of the one-step combinations is more significant than
that of the three-step combinations,

reciprocal combinations produce similar response shapes.

Site effect can be interpreted as a problem of differential displacements
imposed at the pier supports. It has been noticed above that soil type F and M have a
PGD of 0.20 m and 0.50 m, respectively, which can be appreciated in the case
depicted in Figure 3.15 (top, left) where a differential displacemert of about 0.20 m
affects the isolators 2, 3 and 4.
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Figure 3.16. I solators response considering the complete ground motion model (black lines)
and the simplified model with no cross-coherence terms for the site response (gray lines),
for one-step combinations (left) and three-step combinations (right) of Firm and Medium soil.



From the above, it can be concluded that, in case one wants to consider the
presence of varying soil profiles under different support, the effect of non
synchronism can be disregarded.

Since we have now reduced the case of multiple-support excitation to a case
where only the site effect is considered, one could wonder what is the difference in
the global response if one models the site response effect considering only different
soils in the diagonal terms of the PSD functions matrix (2), as opposed to the above
described model where, in addition to this, al the off-diagona terms in the
coherency functions matrix (3) are calculated as function of distance-independent
phase shifts in (@) and representing the cross-coherence among the different ground
motions. In order to assess such difference, analyses have been carried out where the
results obtained with the complete model of the ground motion are compared with
results obtained by taking the site response coherence functions in @) equal to 1.
These comparisons are shown in Figure 3.16 for the same different soil combinations
as above, but only for the case of full synchronism.

0.3 0.3

h=10.0 m - Vs/a=inf m/s - Vapp=inf m/s | h=10.0 m - \s/a=inf m/s - Vapp=inf m/s
= Zozs)
5 5 ol
£ I 0.2 //\
5] FFMFF @ L 72 MMFMM
@ 3 7 M\
= =015
3 Montecarlo % | // Montecarlo
kel - - © -
5 5 0.1f
T T ~ <
é E _\/’/ \\\/
0 ~— L0051 ___.- N
0 ) : : : ) 0 ) : : : )
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Piern. Pier n.
0.3 - - 0.3 - -
| h=10.0 m - Vs/a=inf m/s - Vapp=inf m/s | h=10.0 m - Vs/a=inf m/s - Vapp=inf m/s
F025 €025}
5 .l 5 ol
g 02r e 0.2r
[} | FMMMF © L MFFFM
g g
= 015 =015
% | Montecarlo % | yn\t(ic;rlo
° __=-- 5 /\ _
5 0.1f /___M\_ 5 0.1F N NPZ ~
gL N\ R O S R
o 4 N o P ~o
20051 7 N © 0057 ~o
L ~
0 ) ) ) ) ) 0 ) ) ) ) )
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Pier n. Pier n.

Figure 3.17. Isolator s displacements obtained with Montecarlo analyses (dashed lines),
compared to random vibration analyses with the complete ground motion model (black lines) and to
the simplified model with no cross-coherence terms for the site response (gray lines):
one-step (top) and three-step (bottom) combinations.
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Figure 3.18. Isolators response with different number of Montecarlo analyses:
cases MMFMM (left) and FMMMF (right).

By observing the results it can be concluded that a model thet does not
account for the cross-coherence terms, yields quite different results, even though it
should be recognized that the differences are in most cases acceptable. This amounts
to saying, for instance, that time history analyses could be performed by applying, at
different supports, accelerograms generated from different power density spectra,
without introducing any significant error on the estimation of the peak response of
the isolators.

This is exactly what has been done in Figure 3.17 where the results of the
random vibration analyses are compared with results obtained from Montecarlo
analyses (dashed lines) on 100 samples, with accelerograms applied as mentioned
above. It can be seen that for those cases with prevailing M soil (top-right and
bottom:-left) there are minor differences with respect to the case of the random
vibration analysis with the complete model (black line), while for the cases with
prevailing F soil (top-left and bottom-right) the differences are more significant but
still acceptable.

Thus, a conclusion is reached, of course relative to the cases at hand but of
sufficient generality, that in case the site response effect is to be included into the
analysis of an isolated bridge, an acceptable estimate of the isolators peak
displacement can be obtained through Montecarlo nonlinear analysis. An optimal
number of 10 analyses (Figure 3.18) can be selected to approximate with sufficient
accuracy the exact result, thus confirming the deterministic nature of the site
response effect.
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3.2 Soil-structureinteraction

Soil-Structure Interaction (SSI) effects consist, by definition, in the difference
in the structural response evaluated assuming an ideal rigid and the actual soil
foundation, respectively.

In genera, the difference stems from two distinct physical causes. The first
cause for a difference is due to the propagating nature of seismic disturbances in the
form of waves, that makes the soil motion at any given instant generaly different
from point to point. The ensuing interaction effect with a spatialy extended
foundation is called kinematic interaction: a necessary condition for this effect to be
of importance is that the foundation dimensions are of the same order of magnitude
of the main wavelengths contained in the motion. The second cause for a difference
IS due to the inertia forces transmitted by the structure to the soil during the
oscillations: these forces induce a deformation in the soil that adds up to the one
existing in the free-field, leading to a modified translational component of the motion
and to the presence of a rocking component, whose effect may become significant
for tall and slender structures.

Especialy this second phenomenon, referred to as inertial interaction, has
been the subject of intensive research over a period of thirty years and more; one
could therefore expect by now the main parameters having influence on it to be
adequately understood, and practical procedures available for taking it into account
in design.

A cursory glance at the evolution occurred in this field may serve to better ap-
preciate the scope and limitations of the present state of knowledge.

The reference structural model on which the phenomenon has been studied
has not changed over the years. an elastic, damped oscillator having a rigid mat
foundation resting on, or partially embedded into, a homogeneous or stratified
(visco-)elastic (hysteretic-)half space. While early studies (see for ex. Parmalee 1968,
Tajimi 1969, Castellani 1970) provided fundamental insight into the problem, their
generality was restricted by the then necessarily simple assumptions on soil profile
and by the approximate solutions available for the dynamic impedances of the
footings.

Regarding this latter mixed boundary-value problem, accurate solutions for
rigid footings started to appear by the end of the sixties and their production has
continued until approximately the mid seventies (among the more recent contribu-
tions, see for ex. Veletsos and Verbic 1973, Luco 1974, Gazetas 1976): therefore,
solutions are now available for rigid circular, rectangular and strip foundations on
various combinations of soil profiles (Gazetas 1983).

Currently, efforts are concentrated in providing discretized impedance matri-
ces for general, excavated, spatial soil profiles (Wolf 1984, Apsel and Luco 1987,
Gaitanaros and Karabalis 1988), thus enabling full SSI analyses (kinematic + in
ertial) to be performed on extended, embedded structures of general shape.

Concurrently with the developments in the description of soil responses, sew
eral studies have been made on the ssimple structural model described above in order



to identify the parameters having the maor influence on SSI, and to set up
approximate procedures for accounting of its effects in the design. The most ex-
tensive efforts in these two directions have been made by Veletsos and his co-
workers (see for ex. Veletsos and Meek 1974, Veletsos 1977), who succeeded in
providing a simple procedure by which the actual building is reduced to a so-called
replacement oscillator, a single d.o.f. structure having period of vibration T and
damping x‘ properly adjusted for SSI. This procedure was later incorporated in the
ATC 3.06 Provisions (1983).

Through the mentioned studies, two parameters were found to essentially
regulate the importance of the phenomenon:

the wave parameter:

_'s
S D

expressing the relative stiffness of the foundation medium and the structure. Vg de-
notes the shear wave velocity in the soil, T the fixed-base period of the structure, H
its height.
theratio: H/r , wherer isthe (equivalent) radius of the foundation.
Intuitively, SSI effects are expected to be more significant with s decreasing
and H/r increasing, respectively.
These two parameters can be combined into a third one:

1/ 4
=2 %)

which is best suited to measure the limit condition below which SSI effects are not
worth consideration in the design. The indicated threshold value for f is. f £ 0.125

(Veletsos 1977).

It is appropriate to note that all the methods that have been briefly reviewed
thus far are based on the assumption that the superstructure behaves elastically, a
significant limitation for structures that are intended to resist severe earthquakes, for
which inelastic action is intentionally accepted. Under strong shaking, one should of
course also consider possible soil non linearity: at present, this can only be dealt with
practically by using appropriate effective values for the modulus of elasticity and the
(frequency- independent) damping factor.

Investigations on the effect of SSI in presence of yielding of the superstruc-
ture (as compared with the elastic case) are scarce, if at al. In qualitative terms,
yielding may be viewed globally as a decrease of stiffness of the structure, hence it
could be inferred that it would tend to decrease SSI effects (see parameter f ). No

guantitative information, however, has been up to now derived on this aspect, and
especially on the effects of SSI on the maximum required ductilities in the critical
regions of the superstructure.

Y et the question is not of negligible consequences, asit can be easily demon-
strated through the following case, taken from (Priestley and Park 1987).
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Figure 3.19. Components of the total displacement for compliant foundation
(after Priestley and Park 1987)

For the isolated bridge pier shown in Figure 3.19, the maximum allowable
horizontal displacement at the center of gravity (C.0.G.) of the upper deck is in
genera made up of four contributions:

dmaxzd'f *g; +dy +dp 3
where and are the rigid-body contributions corresponding to the trandlation and the
rotation of the foundation, , is the contribution due to the deformation of the pier
when yielding is first reached at the base, and ,, is due to the maximum admissible
rotation of the plastic hinge located in the lower portion of the pier:

& L,0 & L,0
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L, being the equivalent plastic hinge length.
If the available ductility of the pier, expressed in terms of the displacement at
the deck C.0.G., isdefined as:

d; +d; +d, +d
My =t 5)
d; +d +dy
writing: d, +d =c , it follows that:
(1+c)d, +d
my = s ©)

(1+c)d,

For the case under examination, Eq. (6) is often directly used as the force-re-
duction factor R (i.e., the behavior factor) in the design of the structure.

A value frequently adopted for Ris R = 4. Therefore, lets put 4 at the left-
hand side of Eg. (6), and examine the two cases in which ¢ =0 and ¢ = 1, respec-
tively. One gets: for c=0, d, =3d,; for c=1, d, =6dy; that is, even arelatively



modest deformability of the base requires a large increase in the required plastic
deformation of the hinge, if the displacement ductility has to remain unchanged.

This fact leads back to the initial question: how does the incorporation of SSI
affects the response in terms of maximum required ductility?

The investigation reported in this study attempts to answer this question with
reference to a ssimple structural configuration: a vertical cantilever carrying a mass at
the top, whose mechanica modédl is, apart from the inelasticity of the superstructure,
identical with the “historical” one described earlier.

Since the present study is concerned with bridge piers of common geometry
having spread or strip footing foundations, the assumption of a uniform motion
underneath is sufficiently realistic, and therefore the kinematic effect will not
considered. Moreover, since the context of this study is the calibration of the values
of the R factors to be used in the design of bridges, it has been considered more
appropriate to use data corresponding to redistic geometries (as concerns
foundations, cross-sections, heights, etc.), weights of the deck, steel ratios, range of
soil data, etc., rather than to conduct parametric analyses using the non-dimensional
guantities mentioned previousy. Once the results obtained, however, their
presentation has also been arranged in terms of the parameters, and T' /T, and H/r, to
facilitate their appreciation in terms of classical quantities.

3.2.1 Mechanical model and equation of motion

3.2.11 Superstructure

The piers are modeled as single d.o.f. oscillators characterized by mass,
damping and restoring force. The mass M equals the weight of the supported deck
plus a fraction of the distributed self weight of the pier (@25 % of the total weight):
the fraction adopted is such as to lead to the same natural period for the actual
distributed mass cantilever and a massless cantilever with a single mass on top. The
damping is assumed to be of the viscous type, and characterized by a given vaue of
the damping ratio with respect to the critical. The pier stem is assumed to respond
elasticaly al through its height, except for the plastic hinge zone at the base,
extending for alength L, (Figure 3.20a). The plastic hinge has a moment-curvature

relationship of the Takeda type (Figure 3.20b), i.e., elasto-plastic with strain
hardening and stiffness degradation with increasing cyclic deformation amplitude.
The yielding moment of the Takeda model corresponds to yielding of the furthermost
layer of reinforcing bars, considering the normal force actually present at the pier
base. To account for cracking of concrete, the elastic portion of the pier has been
attributed a stiffness El equal to that of the gross, unreinforced cross section divided
by the factor 2.50.
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Figure 3.20. a) Mechanical model of the pier with soil springs;
b) Moment-curvature relationship of the plastic-hinge zone

3.2.1.2 Foundation and foundation soil

Having considered piers of rectangular cross sections, the foundation mats
have also been taken as rectangular in plan. They are considered in the analysis as
rigid and perfectly bonded to the soil; moreover, the effect of their mass and of their
moment of inertia about the horizontal axis has been disregarded.

For evaluating the dynamic impedances, use has been made of the solutions
for rigid circular footings on an elastic half-space obtained by (Veletsos and Wel
1971), asreported in (Gazetas 1983). To enter these solutions, equivalent radii have
been evaluated using the relationships:
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for the lateral and rocking stiffnesses, respectively (2B and 2L denote the lengths of
the two sides of the block, the former being the side orthogonal to the axis of
rocking).
The dynamic impedances of the soil, relative to the ith degree of freedom,
are usually cast in the form:

Ki=Kg; (ki +iagc;) )
i.e., they are expressed as the product of a static term K ; , which is actually equal to

the static stiffness of the soil system, times a dynamic term, this latter being a com
plex, frequency-dependent quantity. In particular, the stiffness coefficient k; reflects

the dynamic part of the stiffness, as well as the inertia of the soil, while the
dimensionless damping coefficient c; in the imaginary component accounts for the

frequency-dependent loss of energy due to the radiation of the waves away from the
foundation; ag is a dimensionless frequency factor that is a function of the vibrational

frequency and is given by the expression:
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From a computational point of view, it is convenient to treat the dissipative
component as it was viscous in nature, and characterized by an (approximately)
constant viscous factor C;. The value of C; is easily obtained from the equality:

iWCi =i KSt,i aoci (10)
which gives:
Keg. XX
Ci :—St'l ! (11)
VS

where for ¢; one may take its average value over the range of frequencies of interest.
The parameters needed to quantify the dynamic impedances are illustrated in

Figure 3.21 for the horizontal (index t) and rocking (index | ) components,

respectively (Gazetas 1983). It can be observed that c; (and hence C,) is nearly con

stant over the whole range of frequencies for the trandational motion, while for rock-
ing it tends to stabilize for values of ag in excess of 2-3. The values of interest for a,

in the present application, however, are much lower than unity (the values vary in the
range 0.08 < ay < 0.56), 2 that damping due to rocking can be anticipated to be of

negligible importance.
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Figure 3.21. Impedance functions of rigid circular footings on homogenous half space (Gazetas 1983)

(

n=05—-—- n = 0.33): a) horizontal stiffness coefficient k;; b) horizontal damping
coefficient ¢;; c) rocking stiffness coeffi cient kj ; d) rocking damping coeffici entg



In addition to the damping due to radiation, the always present dissipation of
energy due to internal damping of the soil is usudly introduced in the form of fre-
guency-independent hysteretic damping. The equivalence between this latter and that
of viscous type is then found by equating the normalized amounts of energy
dissipated in one cycle of amplitude A at the frequency w in the two forms:

2
Ee lya2 K W
2
2
hysteretic: E—d% =4px (13
Ee 5 K A2

where b=C/ (2 Km) is the ratio of the damping to its critical value, and WK /'m
is the egenfrequency of the 1 d.o.f. mass-spring-dashpot system (that is
characterized by an effective damping C and an effective stiffness K) equivalent to
the massless footing-soil system.

For lightly damped systems it is known that the damping affects the magni-
tude of response in the frequency region close to resonance, alowing to put: w/\WEL

in Eqg. (12) and getting:

b=x (14)
that is: the hysteretic energy loss ratio can be treated in the same way as the critica

viscous ratio, and therefore simply added to the equivalent viscous damping related
to radiation.

3.2.1.3 Effective damping of the soil-structure system

As shown in the following, the 3 d.o.f.s system illustrated in Figure 3.20a can
be reduced to a 1 d.o.f. system in which the only variable is the displacement of the
mass on top.

In parallel, one also needs to evaluate a single effective damping force acting
on the mass, encompassing the combined effect of the reinforced concrete portion
and of the soil. This can be done by having recourse to a well known approximate
criterion (described in Roesset et a. 1973), often denominated as of weighted
damping. In the case at hand the criterion simply consists of assuming that:

a) the system in Figure 3.20a oscillates according to a fixed shape, givenby
Its undamped elastic first mode;

b) the effective damping of the system is given by the weighted sum of the
damping of its parts, the weight being the normalized elastic energy stored into each
of them for a deformed shape corresponding to the first mode.

This leads to the expression:
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where: Eys=p WSC; xiz IS the energy dissipated within the soil by radiation, and Xx;
being the first mode frequency and the moda coordinates of the soil d.o.f.’s respec-
tively, and C; is the damping constant relative to the i-th degree-of-freedom

characterizing the soil-structure interaction (i.e. horizontal trandation or flexural
rotation); E is the modal elastic energy stored in the soil springs; Eg, is the modal

elastic energy in the piers; bg and b, are the effective damping of the soil and of
the pier.

3.2.1.4 Seismicinput

All the analyses made in the present study have been performed using a
seismic input characterized by a value of the peak ground acceleration equal to 0.35
g and by a frequency content corresponding to the amplification spectrum given in
the Euro-code No. 8 (1988) for soils of the intermediate type.

Seven simulated time-histories have been generated from the target spectrum,
having a total duration of 27 s, with a stationary portion of 20 s and two linearly
modulating functions at both ends. Figure 3.22 shows one of the samples and Figure
3.23 the comparison between the given and the average spectrum from the seven
accelerograms. The response quantities from the non linear analyses presented in the
following (peak displacements, ductilities, etc.) correspond to the averages out of the
seven values obtained from each anaysis.
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Figure 3.22. One of the adopted sample- Figure 3.23. Comparison between target and
accelerograms average spectrum from seven accelerograms

3.2.1.5 Equation of motion

The mechanical model of the piers previoudy described and shown in Figure
3.20a has 3 d.o.f.s. atrandational and a rotational component at the base: u, | , and

the total displacement of the mass at the top.



Since, however, u and | are not associated with mass and moment of inertia,
they can be eliminated through static condensation and a single equation can be
written, related to the dynamic equilibrium of the upper mass.

The only quantity that has yet to be derived is the instantaneous tangent stiff-
ness, relating the increment of displacement: D to the incremental force F . This
derivation follows. With the symbols indicated in Figure 3.20a and Figure 3.20b,
given an increment F , the corresponding increment can be expressed as:

Dd=Dd; +Dd; +Dd, +Dd, (16)
where:
DF
Dd, =—— |, Dd— Dd@_li Dd ,=gH - p—L Dlvlg—-—— (17)
t Ky K g Kt

and: K and K are the stiffnesses of the trandational and rotatlonal springs modeling
the pier connection to the soil; Ky is the tangent stiffness of the hysteretic hinge;

DM=DF sH +d- dg)xP
Upon substitution and separation of the terms containing F and D one gets:
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The equation of motion is finally:
M d+2wb o d+K (d)d =M xa(t) (19)

to be integrated numericaly, iterating at each step until K(d) becomes consistent
with the current value of d.

3.2.2 Casesexamined

As mentioned in the introduction, the primary purpose of this study is to as
sess the relevance (in absolute terms) of the SSI effects on dynamic response of
bridge piers responding in the inelastic range. In case these effects were found to be
important, either favorably or unfavorably, then a second purpose would have been
that of identifying the range of parameters leading to the two situations, and finally
of devising appropriate procedures for dealing with both.

In order to achieve the primary purpose with results of sufficient generality, a
quite large number of design parameters have been considered with their likely vari-
ations, the total number of cases analyzed being 240.



The selected parameters are:
the piers cross sections, with two types, A and B, both hollow rectangular;
the height of the piers, with five values ranging from 10 m to 50 m;
the spans of the decks, which have been taken as 30 m (deck a) and 50 m (deck
b). This variation has influence on the mass that is present at the top of the piers
(inertial effects) as well as on the amount of normal force acting at the pier base.
The unit weight of the deck is taken equal to 200 kN/m;
the dimensions of the foundation mats, which have been given two different
values for each of the cross sections A and B;
the percentage of steel r in the piers cross sections (the ratio between steel and

gross concrete areas) which has been attributed two values, equal to 0.25% and
1%, respectively. The background for the selection of these values, and in
particular of the lowest one, is illustrated in the report of a previous study by the
authors (Calvi et al. 1990).

the shear modulus of the soil, for which two values have been selected: G = 100
MPa and 300 MPa, the first one representing a likely lower bound for a direct
foundation. The case of fixed foundation, which has been obvioudly also consid-
ered, can be treated as a third limiting case of G = ¥ .

Table 3.6. Summary of the variables considered in the parametric analysis

Soil characteristics G =100/300/¥ MPa

type “A” (4 m x 2 m x 0.30 m)
type “B” (6 m x 2.20 m x 0.40 m)

Pier sections

Superstructure span length L 30 m (deck “a”) / 50 m (deck “b”)

4 m/6m for piers type “A”
6 m /9 m for piers type “B”

Equivalent radius of foundation r

H (m) 10/20/30/40/50

r (%) 0.25/ 1.00

With the parameters varying as indicated in the above, the periods of oscilla-

tion of the piers in the elastic, uncracked state were comprised in the range 0.22 to
2.60 seconds, thus covering a large percentage of actual cases.

The values assigned to the parameters are summarized in Table 3.6, while

Table 3.7 and Table 3.8 give the values of the soil stiffness and viscous constants for
the various cases, derived trough the relationship:

r
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In Figure 3.24 the values of by, are shown for the various cases as function

of the parameter s . It is seen from Figure 3.24 that the global damping goes rapidly
down with increasing s close to the value of the structure alone, which has been set
at 2%. Therefore radiation and hysteretic damping contributes significantly to the
overal damping only for the extreme combination of stiff structures on weak soil.
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Table 3.7. Stiffnesses and damping of the soil model: pier type“ A”

G n r Ky Kj Cq Cj
(MPa) (m) (GN/m) (GNm/rad) [ (MN s/m) | (MNms/rad)
100 0.33 4 1.92 16.00 20.90 46.30
100 0.33 6 2.88 54.00 47.10 235.00
300 0.33 4 5.76 48.00 36.02 79.80
300 0.33 6 8.64 162.00 81.05 404.00
Table 3.8. Stiffnesses and damping of the soil model: pier type*“ B”

G n r K¢ K Cq Cj
(MPa) (m) (GN/m) (GNm/rad) | (MN s/m) | (MNms/rad)
100 0.33 6 2.88 54.00 47.03 235.00
100 0.33 9 4.32 182.25 105.82 1187.00
300 0.33 6 8.64 162.00 81.05 404.00
300 0.33 9 12.96 546.75 182.4 2045.00




3.2.3 Results

The response quantities will be presented and discussed as functions of three
dimensionless variables:
S_VS T
H
This quantity contains in the numerator the square root of the ratio G/K where
K is the elastic stiffness of the pier: therefore SSI effects are expected to be more
significant for low values of s. For a given value of the product Vg X', the higher is

the value of H the lower is s, a fact that intuitively reinforces the idea that one
should expect greater SSI effects for low values of s.

T

T

The ratio between the fundamental periods of the elastically supported and
the fixed base pier can expressed, in the elastic range, as.
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and tends to unity for Kt >>Kand K; ® ¥ . Even more evidently than s, this ratio
reflects the importance of the interaction in modifying a fundamental dynamic
characteristic of the system. Generaly, with the exception of very short piers, an
increase of T'/T tends to reduce the response in terms of acceleration and to increase
it (in al case) in terms of displacements. What it does produce in terms of ductility is

the main object of the present investigation.
H

]

This parameter is clearly incomplete in describing both the characteristics of
the pier (stiffness and mass properties are absent) and those of the soil, that are
completely missing. It is, however, a geometric parameter of immediate engineering
significance, which justifies the attempt of using it as a variable for showing the
effectsof SSI.

The response quantities examined are the maxima of the top displacements,
of the curvature ductility demand m & the pier bases, and of the displacement
ductility demand my at the pier tops. Each maximum value in the plots represents the
average from seven independent spectrum-compatible accelerograms. The associated
coefficients of variation, not indicated in the diagrams, are approximately uniform
and with a magnitude comprised in the range 0.20 - 0.30.

The parameter h in Figure 3.25 is the ratio of the maximum top displace-
ments with and without SSI effects (fixed base). For the sake of completeness, the
fixed base values of the maximum top displacements are reported in Table 3.9. There
is nothing unexpected to be noted in Figure 3.25: adding flexibility to the founda-
tions leads to increased maximum displacements. The results can be demonstrated in




termsof s, asin Figure 3.25a, where the increase of h is seen to be higher for lower
values of s (that is, for higher SSI effects), or in terms of T /T, asin Figure 3.25b,
where is the lengthening of the period to produce higher valuesof h.

Considering the width of the examined range, however, the effect does not
appear as redly significant: in more then in 90% of the cases h islessthan 1.25, and
it is below 1.50 for aimost al cases. In a not negligible percentage of cases, a
(generaly) dlight reduction (h < 1) aso shows up.
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Figure 3.25. Ratio of the maximum top displacements with and without Sl effects:
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Table 3.9. Maximum top displacements (in m) for the fixed-base case

H Pier A Pier A Pier A Pier A Pier B Pier B Pier B Pier B

decka | decka | deckb | deckb | decka | decka | deckb | deckb
r=025|r=100|r =025 r =1.00|r =0.25|r =1.00|r =0.25|r =1.00

10 0.028 0.033 0.046 0.033 0.011 0.010 0.018 0.014
20 0.129 0.113 0.150 0.158 0.061 0.061 0.081 0.075
30 0.270 0.257 0.293 0.306 0.109 0.125 0.149 0.150
40 0.443 0.412 0.501 0.525 0.202 0.211 0.257 0.277
50 0.556 0.586 0.703 0.642 0.292 0.340 0.368 0.414

This result is due to a combination of two factors. the higher damping
contributed by the soil (especialy for sguat piers), and the amount of inelastic
response. While in fact h < 1 could not occur for equal damping and in the elagtic
range, the behavior of a yielding and degrading oscillator does not rule out a
reduction. As afinal comment on the displacement, the nearly horizontal trend of the
regression lines in the Figure 3.25 demonstrates that h is only weakly sensitive to all
of three variables.

The remarks made thus far have only an introductory character with respect
to the actual issue of the study, which relates to the influence of SSI on the inelastic
response. This influence appears directly in Figure 3.26, where the ordinate c rep-
resent the ratio between peak curvature ductility demands m (averages from seven

accelerograms), with and without SSI effects, as functions of the three variables: s,
T/T, Hfr. The ordinates scale has been magnified on purpose for an immediate
appreciation of the results, which can be simply summarized as follows: the majority
of the paints lie on or below the line ¢ = 1; the total scatter does not exceed + 25%;
the regression lines really should be taken as horizontal for al practical purposes.

Table 3.10. Peak curvature ductility demand (fixed-base case)

H Pier A Pier A Pier A Pier A Pier B Pier B Pier B Pier B

decka | decka | deck.b | deckb | decka | decka | deckb | deckb
r =025|r =1.00|r =0.25|r =1.00|r =0.25|r =1.00|r =0.25|r =1.00

10 6.48 3.33 6.84 4.74 3.13 2.20 4.30 3.13
20 4.00 2.61 4.71 3.38 291 1.92 3.72 2.52
30 3.56 2.44 3.77 2.65 2.13 1.57 2.74 1.92
40 3.09 2.02 3.43 2.45 2.00 1.35 2.53 1.76

50 2.18 1.67 1.99 2.00 1.74 1.32 2.15 1.62




Looking at the results in more detail, one could observe a systematic reduc-
tionof ¢ for the lower value of the reinforcement ratio (r = 0.25%). In other words,
the curvature ductility demand my decreases when SSI combines with low yielding

dructures. The range of values of the m’s for al the fixed-base cases, and in
particular for r = 0.25%, can be seen in Table 3.10.
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Figure 3.26. Ratio of the maximum curvature ductility demands with and without SS effects:
a) asafunction of s ; b) asa function of T'/T; ¢) asa function of H/r



The result depicted in Figure 3.26, i.e, the fact that m is substantially in-

sensitive to SSI, was not obvious beforehand and has a direct bearing on the argu-
ment raised in the introduction. In fact, if m remains approximately constant inde-

pendently on SSI, and the factor c in Eqg. (6) is anything greater than zero, then the
displacement ductility demand ny as defined in Eq. (6) can only decrease.

This fact is confirmed by Figure 3.27, where the ratio of the my with (my g )
and without (my 5,) SSI is plotted as function of s. The observed reduction is
systematic and the average is about 0.85. In the cases examined the factor ¢ was
comprised in therange 0.1 - 1.85.
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Figure 3.27. Ratio of max displacement ductility demands w/ and w/out SSl as function of s
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Figure 3.28. Ratio of plastic components of top displacements w/ and w/out SS as function of s

One may therefore conclude that the increase of the peak top displacement
generdly produced by the SSI is due to the rigid body motion components
originating from the soil deformation at the foundation level, and not to greater
inelastic demands at the base section. The inelastic demand does not show systematic
dependencies from the parameters that regulate the SSI phenomenon, but is
statistically lower (though to a small degree) in the case of a flexible foundation.



To further force this point, in Figure 3.28 the ratio y of the plastic
components of the top displacements, with and without SSI effects, is plotted as
function of s. Practically all points lie below the line indicating unity, with an
average of 0.90 and ac.o.v. of 0.18.

As a fina remark, one might argue that the definition of the displacement
ductility for the case of a compliant soil as given in Eg. (6) may not be totaly ap-
propriate, since it introduces displacement components not related to the state of
strain of the structural part. If these components were eliminated from the definition,
i.e., if the results were plotted using the standard definition of displacement ductility
(which accounts to putting ¢ = 0 in Eq. (6)), the plot in Figure 3.29 is obtained. The
ordinates have the same meaning as in Figure 3.27, thet is the ratio nt of my for the
SSI and the rigid-base cases (whose values are reported in Table 3.11). The points
have arelatively low dispersion and the average value is 0.98.

The essence of what has been discussed thus far is that soil compliance does
not appear to have a significant bearing on inelastic demand, at least for the simple
structural types that have been considered.
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Figure 3.29. Ratio of max displacement ductility demands w/ and w/out SS,
evaluated neglecting the rigid-body components of the pier top displacement, as function of s

Table 3.11. Peak displacement ductility demand (fixed-base case)

H Pier A | Pier A | PierA | PierA | PierB PierB | PierB Pier B
decka | decka | deck.b | deckb | decka | decka | deckb | deckb
r =025|r =1.00|r =0.25(r =21.00|r =0.25|r =1.00(r =0.25|r =1.00
10 5.68 2.24 4.88 2.59 2.39 1.72 3.45 191
20 3.64 1.87 3.40 2.06 2.21 1.64 3.40 1.80
30 3.19 1.84 2.81 1.75 2.18 1.43 2.60 1.58
40 2.77 1.60 2.56 1.64 2.15 1.30 2.36 1.54
50 2.09 1.41 1.75 1.45 191 1.29 2.04 1.43




Since this fact is not commonly recognized, controversia opinions actually
exist among specidlists: it is then of importance to know whether the validity of the
obtained results is restricted to the ranges of variation attributed to the parameters or,
on the contrary, the results are expression of atrend having a character of stability.

To this end, additional “bounding” cases lave been anayzed, in which the
stiff ness of the soil is decreased down to G = 30 MPa, and the intensity of the input
isdoubled to 0.7 g. In thisway, the effects of soil compliance are magnified, and the
structural response is moved deeper in the inelagic range.

The limit to 30 MPa (Vg = 120 m/s) has been set in consideration that it corre-

sponds to about half of the value of Vgwhich in some recent seismic codes marks the

separation between intermediate and soft soil conditions. Below this value, it is likely
that site-specific soil amplification studies would be required, ruling out the recourse
to standard response spectrum shapes. For these latter cases, which are outside the
scope of the present work, indications of general validity do not seem possible.
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Figure 3.30. Ratio of max displacement ductility demandsw/ and w/out S,
evaluated asinFigure 3.29, asfunction of s : also the case G= 30 MPa is considered
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The results from the additional analyses are summarized in the two Figure
3.30 and Figure 3.31, which should be compared directly with Figure 3.29. In
particular, Figure 3.30 includes all the old as well as the new cases (G = 30 MPa)
with the peak ground acceleration (PGA) fixed at 0.35 g, while Figure 3.31 repeats
the total number of cases for a PGA = 0.7 g. In both figures the results for G = 30
MPa are represented by the points corresponding to smaller values of s, and they
indicate a significant systematic decrease of the inelastic effects with the increased
compliance of the soil.

The average values of all the ordinates (Figure 3.30) is 0.91 instead of 0.98,
but for the new cases only it would be of the order of 0.8. Finally, comparison
between the Figs. 12 and 13 indicates that the ratio of the ductility demands with and
without consideration of SSl is virtualy independent of the intensity of the shaking,
that isto say, of the amount of ductility actually exploited.

3.2.4 Conclusions

A large parametric study has been undertaken with the purpose of determin-
ing the effects of SSI on the inelastic response of realistic cases of pier heights and
shapes. Wide-band frequency content and adequate intensity of the seismic motion
have led the response of the piers well in the indastic range, with maximum
curvature ductility demand in the order of 7.

The results indicate that while in most cases SSI produces an increase of the
maximum displacements, this effect is not very significant and, furthermore, is only
due to the rigid body components arising from the soil deformation at the base.

The inelastic demand in terms of curvature remains essentially unaffected by
SSI, showing however atendency to decrease. If the rigid body components are sub-
tracted from the total displacements, then the displacement ductility demands on the
piers are consistently also decreased by the SSI effects.

These conclusions have been proven to remain valid aso in cases where soil
compliance takes on values which are the lowest till compatible with the use of
standard shapes of the response spectra, as well as for peak ground acceleration (0.7
) close to the upper bound presently considered in areas of very high seismicity.
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3.3 Vertical oscillations

In view of the field evidence (Ono et al. 1996) of the damaging effects due to
axia vibrations in verticad members of RC structures during past earthquakes,
various authors have investigated this problem in the past few years. In particular, the
effects of vertical ground motion components on buildings and bridges (Papazoglou
and Elnashai 1996, Elnashai and Papazoglou 1997) have been studied. The ground
motion vertical component tends, in general, to be ignored or underestimated in
current seismic analysis of structures. On the contrary, some studies have shown that
it has a considerable relevance, particularly in the field of soil-structure interaction
(Mohammadioun 1997). A remarkable field evidence of this fact was found in the
near past, during the Hyogo-ken Nanbu earthquake of 1995, where (JSCE 1995)
ground vertical acceleration components experienced little attenuation from bedrock
to ground surface (as opposed to horizontal ones), even in potentialy liquefiable
soils. As a consequence, high vertical seismic inputs on structures were observed and
unusual failures of vertical members occurred.

While a number of studies has been presented on the effects of vertical
ground motion on structures in general (Papalentiou and Roesset 1993), little or no
attention has been dedicated to vertical accelerations induced in RC members by
flexural cracking. Independently of the vertica ground motion input, this source of
vertical impulses can cause particularly severe effects in some types of sructures.
For aredlistic estimate of the global response of RC structures, the two components
outlined above should be added together.

Most seismic codes do not give, in fact, specific recommendations on this
issue. Nonetheless, structural members may experience sudden failures associated
with instantaneous decay of shear or flexura strength due to high axial force
fluctuations. As reported in (Elnashai et al. 1995), axia force fluctuations due to
combined effects of vertica ground motion and bending-induced vertical
accelerations may easily exceed +60% of the satic axial load. In these
circumstances, the piers become obviously very vulnerable. Moreover, maximum
bending-induced vertica accelerations should occur approximately at maximum
horizontal response, therefore determining a case of extreme severity. The issue is
particularly relevant when considering the performance of joints and bearings.

Scope of the present work is to quantify the component of vertical oscillations
due to concrete cracking and rocking mechanism in bridge piers, with particular
reference to systems in which the deck is made of multiple girders supported by large
cap beams. In this kind of structures, very frequent in European and Japanese
highway networks, bending-induced axial vibrations may have a significant effect on
the general structural performance, including that of bearings. The frequency content
and magnitude of the verticd motion associated with this effect is analyzed for
different structures, with different natural periods. Typical existing viaducts, as well
as similar structures, designed using Eurocode8 seismic code provisions (Eurocode 8
1994) are anadlyzed. A simplified model, based on the cracked section kinematics, is
developed to predict the magnitude of bending-induced axial accelerations.



3.3.1 Theanalyzed structures:. geometry and dimensioning

Three different structures, meant to be representative of typical prestressed
concrete viaducts in seismic regions, have been analyzed. The three structures have
the same 30 m span superstructure and different pier heights. 6, 12 and 18 m
respectively. Each analyzed structure is supposed to be part of a viaduct made of a
sequence of equal spans, smply supported on piers of similar heights. The analysis
of the seismic response of these structures in the transverse direction is then carried
out on a 2D schematization, taking into consideration one pier only with two half
spans each side.

The superstructure, with atotal platform width of 15.7 m, is made of a0.25 m
reinforced concrete dlab connecting four prestressed concrete girders as shown in
Figure 3.32. This deck configuration requires a 11.5 m wide cap beam, in order to
seat four bearings with a center to center distance of 3.5 m. The weight of one span
has been assumed equal to 6000 kN, therefore a vertical load of 1500 kN acts on
each bearing support. An additional weight of 600 KN has been considered to
account for the cap beam.
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Figure 3.32. Pier type considered with superstructure.

Dimensioning of the pier cross section has been carried out so as to obtain a
normalized axia load P/(féAg):O.l under self weight alone, as typical for this

kind of structures ( f{ is the unconfined concrete compression strength and Ay isthe

area of the gross section). The flexural capacity of the pier cross section, reflecting
the actual situation of most existing viaducts, has been dimensioned according to
allowable stress criteria. For each structure, the design moment is computed based on
a constant response spectrum of 0.1g. The required flexural capacities are therefore



proportional to the pier height since the total mass is roughly the same for the three
cases; the base bending moments are computed on a cantilever scheme, neglecting
the influence of deck torsiona inertia and cap beam flexibility.

The same hollow cross-section has been adopted in the three cases with

different amount of longitudinal einforcing steel r . Table 3.12 summarizes the
main design characteristics.

Table 3.12. Pier geometry and mechanical properties

Pier Height | Section dimensions | Wall Thick. r My M,
[m] [m] [m] [%)] [kNm] [kNm]
6 25x15 0.3 0.35 9667 10166
12 25x15 0.3 0.70 12204 13939
18 25x15 0.3 1.00 14090 16929

Note that the longitudinal reinforcement ratios have been expressed as a
function of the concrete section net area (excluding the hollow portion). The first
yield moment My (bending moment at first yield of longitudinal rebars) and the
nominal moment M, (defined here as the bending moment at 5 times yield curvature)
are indicated to conventionally define the mechanical properties.

The choice of this kind of structures, with extremely low longitudina
reinforcement,  reflects the intention of approaching the problem from the
assessment of existing bridge piers. The use of current design codes based on
ultimate limit state analysis and period-dependent response spectra would lead in fact
to different flexural capacities. For comparison, the design moments obtained using
the EC8 Design Code (Eurocode 8 1994) for a peak ground acceleration of 0.35g, are
reported in Table 3.13.

Table 3.13. EC8 Dimensioning

Pier height [m] Mg [KNmM] - EC8 Behavior Factor q
6 13300 2.5
12 10941 3.5
18 10002 3.5

Following the EC8 design procedure, design moments My have been
computed using modal analysis of the structure including cap beam flexibility and
lumped masses with horizontal as well as vertical components. A reduced ductility
level (behavior factor ) has been used for the 6m pier as suggested by the EC8 in
case of squat members.



Shear dimensioning of the three structures is omitted since the investigations
are focused on axia-flexura coupling, however it is assumed that adequate shear
reinforcement is provided to ensure a flexural dominant response when large
inel astic displacements occur.

Before analyzing the nonlinear behavior of these structures under a selected
earthquake, it is interesting to see the results of the moda analysis to gain an insight
on their dynamic properties. When these structures are modeled with realistic
flexibility for the cap beam and both vertical and rotational masses are included to
account for the vertical loads of the superstructure acting on the bearing supports,
higher modes significantly influence the global behavior. Especialy in the case of
the short pier, a significant percentage of horizontal modal mass is found in the
second mode, which is of the double bending type. In the following, the important
consequences of these aspects on the phenomenon of bending-induced axial
vibrations will be discussed.

Two different configurations have been analyzed for the structural systems
under consideration: the first assumes an infinitely rigid superstructure (rigid deck
model), the second assumes a redlistic flexibility for the superstructure (flexible deck
model). The corresponding mass and stiffness distributions are represented in Figure
3.33 and Figure 3.34, respectively. The main difference between the two models is
that vertical masses are rigidly connected to the pier cap beam in one case, and via
elastic supports (smulating the deck flexibility in the vertical plane) in the other
case.

Rigid Deck Model Flexible Deck Model

Stiff Beam
1/4 Deck Mass representing 1/4 Deck Mass A=aq
Total Deck Mass the Deck 1 1 1 i
1 ® Hinge
v 0 —
" /% ; < $

J
Elastic Cap Beam
Elastic Cap Beam
Cap Beam Mass
EA=Kdeck/4 Cap Beam Mass
Springs repr§§en§ing
Nonlinear fibre elements the deck flexibility in the \
H " vertical plane / Nonlinear fibre elements
Vertical Mass
0 d @ Vertical Mass
O Horizontal Mass fe) .
1 Fixed Base —— 1 Fixed Base _|_ Horizontal Mass
Figure 3.33. Rigid deck model. Figure 3.34. Flexible deck model.

Natural frequencies and participating masses in x and y direction are
indicated in Table 3.14 for the two models. The mode shapes of the 6 m pier
structure ae depicted in Figure 3.35 in the case of rigid deck assumption and in
Figure 3.36 in the case of flexible deck assumption.



Table 3.14. Results of modal analyses

Pier height Mode Participating Mass | Participating Mass T
[m] number % - X dir. % - Y dir. [sec.]
Rigid Deck
1 51.0 - 0.583
6 2 48.0 - 0.123
3 76.0 0.070
1 79.9 - 1.190
12 2 20.1 - 0.232
3 90 0.090
1 89.9 - 1.960
18 2 10.1 - 0.303
3 95 0.104
Flexible Deck
1 36.0 - 0.637
6 2 87.0 0.322
3 59.0 - 0.243
1 76.2 - 1.220
12 2 23.1 - 0.363
3 84.0 0.326
1 88.7 - 1.970
18 2 11.1 - 0.427
3 - 82.0 0.330

As anticipated before, it can be noted that the horizontal mass has a relatively
low contribution to the first mode in the 6 m pier (especially in the flexible deck
assumption). Rotation of the pier top is very limited in this case, thus enforcing a
reverse bending behavior. Concrete cracking will therefore take place in the top and
bottom sections, possibly increasing the hammering effect at bending reversal. In the
12 m and 18 m piers instead, the deck rotational inertia is not significant when
compared to the pier flexibility. The pier ceforms mainly in smple bending with
concrete cracking located at pier base only.

In al linear elastic modal analyses, cracked stiffnesses have been assumed for
the pier section using the expression proposed in (Kowalsky et al. 1995).

Particular attention has been given to the modeling and to the distribution of
lumped masses, since axia vibrations on the pier might excite vertical vibration
modes. For this reason it has been decided to also invegtigate the influence of deck
flexibility.
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Figure 3.35. Rigid Deck Model — Modal Shapes.
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Figure 3.36. Flexible Deck Model — Modal Shapes

3.3.2 Thenumerical modelsfor non-linear time-history analyses

The three structures have been modeled using a flexibility-based fiber beam
element developed by the authors (Petrangeli 1996, Petrangeli and Pinto 1998). The
peculiarity of this element being that equilibrium, compatibility and constitutive
equations are satisfied along the element, at each load increment, using an
equilibrium based iterative solution (Petrangeli and Ciampi 1997). This feature is
particularly relevant to the problem under consideration since, using the traditional
stiffness approach, the axial force impulse associated to the nonlinear flexural
behavior would result in an internal element unbalance which would not be correctly
integrated along the element length.

Each pier has been modeled using two fiber beam elements with three, four
and five integration Gauss points (monitoring sections) for the 6, 12 and 18 m piers
respectively. The number of integration points has been selected in order to attain the
same numerical precision in integrating the longitudina strain field in the three
structures, while maintaining the same tributary length to each integration point. The
integration of the element strain field would require in fact a larger number of
integration points for the shorter piers which have a predominant double bending
type of deformation compared to the single bending type of the taller ones. The
opposite would be required to keep a constant tributary length br each monitoring



section. In fact, in the short pier shear cracking will take place over at least 2/3 of
column height, indicating the presence of a larger plastic hinge region. On the other
side, the extremely low longitudinal reinforcement ratio will localize plastic hinging
a the base. As a consequence, it is believed that, in this specific case, the suggested
integration scheme applies successfully to all three piers.

The pier cap has been modeled using linear elastic elements with equivalent
mechanical properties. Rigid offsets have been introduced to account for the pier
cross section width and the pier cap height.

Congtitutive models for concrete and reinforcing steel use state-of-the-art
uniaxial stress-strain relationships based on the work of Mander et al. (1988) and
Menegotto and Pinto (1977), respectively. In the concrete model, a crack-bridging
branch has been introduced, providing a smooth transition between the tensile and
the compression branches. This feature was required in order to avoid an
overestimation of the impulsive component of vertical acceleration at crack closure
which the origina concrete model could have caused as a result of the abrupt
trangition between the zero stiffness, zero stress cracked state and the eloading
branches to compression.

Mechanical properties of the sted have been assumed as follows: yield
strength = 400 M Pa, ultimate strength = 570 MPa, Y oung’s modulus = 200000 M Pa,
ultimate strain = 0.10. Mechanical properties of the concrete are: unconfined strength
= 35 MPaq, confined strength = 42 MPa, strain at ultimate stress = 0.0035, Young's
modulus = 30000 MPa, tensile strength = 2.5 MPa, fracture energy = 0.1 kN/m.

The deck horizontal mass (600 t) has been placed in one node only (at pier
top, asindicated in Figure 3.33 and Figure 3.34) to avoid axia (horizontal) vibrations
in the pier cap beam; vertical masses have been placed instead at each beam support
(150 t each) and at pier top (60 t). In the rigid deck model, the mass of the
superstructure is rigidly connected to the cap beam (Figure 3.33). In the flexible deck
model instead, deck vertical masses are connected to the cap beam via elastic
supports (Figure 3.34). The stiffness of these elastic supports has been assumed such
that the vertical oscillation of the rigid horizontal beam representing the
superstructure (upper beam in Figure 3.34), has the same period of the first vertical
mode of a typical prestressed concrete deck of 30 m span; this period is estimated at
0.3 sec.

The first mode natural frequencies computed with modal analysis have been
used to quantify the viscous component of the structural damping. A viscous
damping, in addition to the hysteretic one, has been considered in fact by means of a
mass proportional damping factor C, where, for astic systems, C = 2wm with m
the mass, x the percentage of critical damping and w the circular frequency. A vaue
of 3% of critical damping has been assumed in our case to be representative of all
viscous damping components acting within the elastic structural response. This value
does adds up to the significant energy dissipation provided by the hysteretic behavior
of concrete in tension (fracture and bond energy). It mainly accounts for the damping
effects caused by deformation in the bearings, in the cap beam and in the deck.



3.3.3 Resultsof non-linear analyses

A set of nontlinear time- history analyses using the genera purpose F.E. code
FIBER (Petrangeli 1996) has been performed using an accelerogram compatible with
the EC8 response spectrum with PGA=0.35g as horizontal ground motion input. The
vertical component has been purposely ignored in a first stage, while it has been
included in a second set of analyses to evaluate the coupling effect on the pier axia
response. A generated accelerogram, rather than a natural one, has been considered
for the reason of simplicity. Severa different ground motion inputs should be
consdered in fact for a more complete analysis.
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Under the imposed horizontal ground motion, large inelastic deformations
occur in the three structures. In al cases a plastic hinge forms a pier base, where
longitudina reinforcing bars reach (for the 6 m pier) a maximum strain of
approximately 2.0%. Maximum base shears are 2500 kN, 1250 kN and 980 kN for
the 6 m, 12 m and 18 m pier respectively.

Moment curvature cycles at pier base are plotted in Figure 3.37 for the rigid
deck models. In the same graphs the corresponding axial force time history is aso
reported. The largest ductilities are found for the 6 m pier with a curvature ductility
m = 8+9. For this pier, the inflection point is located at 0.54H (with H full height of
the pier), while for the 12 m and 18 m is 0.66H and 0.69H respectively. Note that the
maximum axial force fluctuations are found for the 6 m pier (+58% in compression
and —35% in tension). None of the piers experienced stedl yielding in the top section
below the pier cap beam.

In the 6 m pier a globa displacement ductility of about 5.0 is reached,
compared to 2.5 and 2.0 in the 12 m and 18 m pier respectively. This remarkable
difference in global damage is due to the inappropriate strength provided by the
allowable stress design criterion and to the flat design spectrum adopted (0.19).
However, this result reflects the actual situation on existing viaducts where sguat
piers tend to have very light longitudinal reinforcement ratios.

Maximum displacements drifts are in a range of 0.75% to 1% of pier height.
Maximum vertical displacements at external bearing locations are insensitive to the
pier height and are always around 0.05 m.

The maximum response of the three structures is summarized in Figure 3.38
and Figure 3.39 for the rigid deck and flexible deck model respectively. Maximum
accelerations at bearing locations are indicated for each structure as a function of
their fundamental elastic flexural period. It can be seen that in the proposed
examples, the deck horizontal maximum acceleration does not vary significantly with
pier height while the vertical acceleration does, due to varying axial/flexural period
ratio as well as cap beam width/pier height ratio.

As anticipated before, vertical acceleration response is particularly high for
the sguat pier, where a peak value of 0.9g is found at external bearing location.
Generally, bending-induced vertical accelerations decrease with increasing pier
height as also confirmed by other analyses. Vertica acceleration of the outer
bearings includes in fact both an amplification of the pier vertical acceleration due to
the pier cap beam flexibility and a “geometric’ component due to the rotational
acceleration of the pier cap beam itself. This component obviously decreases with
decreasing cap beam width/pier height ratio. The distribution of the vertical
acceleration along the cap beam from pier top to externa bearing location can be
easily be derived from the graphs of Figure 3.38. In Figure 3.38 and Figure 3.39 the
elastic response spectrum (with 5% damping) corresponding to the generated
accelerogram used in the analyses as ground motion input, is aso reported.

Minor differences between the rigid and flexible deck models in terms of
maximum accelerations are detected, although for the 18 m pier, the vertical
acceleration on the outer bearing is higher due to dynamic amplification.
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Maximum vertical response at pier top for the flexible deck model (Figure
3.38) has been omitted since no significant mass is lumped in that location. Results
seem to indicate that, in this kind of structures, the deck flexibility does not influence
the structura response in the vertical plane. However, it has to be noted that other
ground motions might induce a different response, leading to different conclusions.

Maximum displacement envelopes are shown in Figure 3.39 for rigid and
flexible deck models. It should be noted that both the maximum horizontal and
vertical displacements mainly depend on pier flexural response, which is driven by
the horizontal mass inertia and does not significantly vary with deck flexibility. The
same result is found for the three structures, indicating that deck flexibility has little

Main Flexural Period (sec.)

Figure 3.39. Maximum response for flexible deck model.

influence on displacements in awide range of pier flexural periods.
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Figure 3.40. Acceleration response spectra (5% damping) of the horizontal and vertical deck motion
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In the following, the analysis of the frequency content of vertical motion will
be carried out for the rigid deck model only, since minor differences are found for
the flexible deck case. The plots of Figure 3.40 show the acceleration response
spectra (with 5% damping) of the horizontal and vertical deck motion recorded at
each bearing location and at pier top. The ground motion spectrum is plotted for
comparison. These spectra provide an idea of the frequency content and magnitude
of the dstructural response. Their values for T=0 correspond to the maximum
accelerations plotted in Figure 3.38 and Figure 3.39 which are the ones to be used to
evaluate the maximum vertical and horizontal force transmitted between deck and
piers. In Figure 3.40, the peak below 0.2 sec. At the outer bearing location is clearly
due to the selective amplification of the first vertical vibration mode of the pier (see
mode 3 in Figure 3.35). It can be seen that the response spectra of vertical
accelerations tend to be more concentrated in a narrow band of frequencies as the
pier flexural period increases, while those of horizontal accelerations tend instead to
have a constant level of response (i.e., frequency indeperdent) around 0.75g

It can be noted from the results discussed above that on external bearings
vertical acceleration response is equal or greater (up to afactor of 2 for the 6 m pier)
than the horizontal one. With the ratio between vertical and horizontal force on
bearings (R/H) falling to such low values, unseating phenomena are likely to occur.
The most significant examples of these low values occurred during the analysis are
reported in Table 3.15 for both internal and external bearing in the 6 m pier. The
Situation at maximum response (t=24.54 sec) is also reported. Note that the vertica
reaction under self weight alone is equal to 1500 kN.

Table 3.15. Forces on bearings during earthquake response

External Bearing Internal Bearing
Time (sec.)| Shear (kN) [ Load (kN) | Shear (kN) | Load (kN)
5.23 -469 305 -469 1119
8.22 43 2639 43 1932
8.26 -572 556 -572 1500
24.54 291 1172 291 1388

Response at 8.22 sec shows a case, opposite to the ones discussed above, in
which the maximum vertical reaction of the bearings is nearly twice the static one.
The full time history of the vertical reaction has been plotted as a function of the
corresponding shear force in Figure 3.41. During the analysis the external bearing
experiences a minimum ratio between vertical reaction R, and shear force H equal to
0.65, while the internal bearing has a minimum value of 2.26.
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Figure 3.41. Vertical reaction as function of the corresponding shear force.

Thisresult confirms that bending-induced axial vibrations can produce severe
effects when amplified by the presence of wide cap beams. Moreover, when the pier
has a low aspect ratio, the level of axial accelerations induced by flexural cracks is
particularly high.

If the time-history analyses of the three structures are repeated using the
longitudinal reinforcing ratios found dimensioning according to EC8 (see Table
3.13), lower accelerations are found. Displacement ductilities at maximum response
are 2.5, 3.5 and 4.0 for the 6, 12 and 18 m pier respectively, showing a remarkable
accuracy of the EC8 methodology. Vertical accelerations at pier top are 20-25%
lower with respect to the piers previousy anayzed, showing that no direct
proportionality can be established between axial impulse ard pier ductility. This is
confirmed by the fact that a 50% reduction in ductility for the EC8-6 m pier (with
respect to the pier of previous analyses) is associated to a 20% reduction of the
vertical accelerations while in the EC8-18 m the same reduction in vertical
acceleration is associated with a doubling of displacement ductility. It is thus
confirmed that the pier aspect ratio and the maximum horizontal acceleration
response, rather than the global ductility level, have influence on the axial vibratiors.

The effect of the vertical ground motion component can now be introduced to
attempt a quantification of the relative importance of the two different sources of
axial vibrations,

The analyses carried out above are repeated again for the first set of structures
(i.e., allowable stress designed) with inclusion of a vertical motion with peak ground
acceleration equal to 2/3 of horizontal peak acceleration. This ground motion
component is still compatible with the EC8 response spectrum and has the same
duration and starting time step of that of horizontal motion. In these analyses the two
sources of axial vibrations are therefore taken into account and their effects appear
combined. Maximum acceleration results are reported in Figure 3.42. The values are



in al cases larger than the corresponding ones in Figure 3.38, where the ground
vertical acceleration is absent, but it is perhaps surprising to note that the order of
magnitude has not changed. In other words, from the ‘spot’ cases examined it would
seem that the predominant contribution to the vertical response accelerations comes
from the rocking mechanism, not from the vertica acceleration input. This is
probably a hasty conclusion, not supported by adequate evidence and generality of
the cases under consideration, but it is a least an indication that if vertica
acceleration are of some consequence for the resistance of bridge piers and deck
supports, the rocking mechanism effect should not be neglected.
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Figure 3.42. Maximum acceleration results.

3.3.4 Simple mechanical model for axial vibrations

An attempt to establish a closed form approximate relationship between these
axial vibrations and the pier flexural resporse will be presented herein. The main
assumption is that cracked sections can be treated as rigid bodies during their motion
induced by flexural response. In this idealization the sections rotate about a point that
coincides with the position of the neutral axis. The impact of the sections during
bending reversal will be assumed elastic with initial conditions (i.e, values of
velocity and acceleration) found from the rigid body motion assumption.

Assuming that plane sections remain plane the following relation holds
between the curvature ¢ and axial elongation e, for a RC section:

16
e, = o/ - =% Q)
p = |g 25
wherek isascaar parameter (O£ k £1) defining the neutral axis depth (1-k)d.



Let us now assume the flexural response of a generic section be described by
asimple sinusoidal function as follows:

. &®pt0
c(t) = cmaxsng—j )
Tf ﬂ

with T; being the predominant flexural period of the pier. The section axial
deformation, according to (1), can therefore be written:

sn@ j? ——d (3)

where the absolute value of the sinusoidal functlon is taken since the axial elongation
Is always positive.

In order to obtain simple expressions for the velocity and the acceleration of
the axial strain 3) we assume that the position of neutral axis is fixed (.e, kK is
constant), even though with increasing curvature the neutral axis tends to shift
outwards (i.e., k increases). Axial displacement, axial velocity and axial acceleration
as afunction of time have been qualitatively plotted in Figure 3.43.
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Figure3.43. Axial dlspl acement, axial velocity and axial acceleration as function of time.

The velocity is discontinuous for t=nT; /2 (with n=1,2...). In these

characteristic points, the section is subjected to a vertical impulse which reverses the
displacement direction, changing sign to the axial velocity. These points correspond
to the crack closure and the sudden shift of the neutral axis from one side of the
section to the other (as depicted in Figure 3.43 in the section kinematics). These



impulses are the main cause of the vertical oscillations observed in the analyses.
Outside these points, the section is still subjected to a vertical acceleration as the
result of the flexural response. This component of the acceleration, smaller than the
impulsive one at bending reversal, is found as the second derivative of @). Its
maximum value is :

[ max]a? 0 .maxg = ¢ MeX ﬂzg?(- 19d 4)
n_‘ §dt2 = u T?é 2o

(4] Tf 6
% 25

In the following it will be shown that this component of the vertica
acceleration is negligible when compared to that due to the impulse at bending
reversal (see Eq.(7)).

In order to obtain an estimate for the magnitude of this impulse, the
assumption of rigid body motion must be relaxed and the impact at crack closure
treated as an elastic rebound. We assume therefore that this elastic impact takes place
in a finite time interval Dt. With these hypotheses, the impulse amplitude can be
computed as follows :

mDv:(‘Btfdt:(‘Btmadt (5)

where m is the mass and f the inertia force. The velocity variation Dv that takes place
during the time interval Dt can be set according to Fig.14 by computing the right and
left limit of the first derivative of (3) for t ® nT¢/2.The time interval Dt is
tentatively set equal to one half the fundamental axial period of the pier-deck system
(Dt =T, /2), so that Dt corresponds to the compressive semi-cycle of the pier elastic

rebound. Therefore, the velocity variation within the specified time interval is:

de y
Dv= 262 =ocmx P& 19y (©)
a at LEE T_fi T¢ e 2g
5

If we assume that the impulse has a sinusoidal shape, we obtain from (5):

max% ro=B P Zom &K ()
iy o 2T,0 T, & 28

where the p/2 factor is found by integrating the sinusoidal impulse over the time
interval Dt in (5).

A simple relation between the pier maximum horizontal acceleration response
and the curvature maximum acceleration can be easily obtained by assuming the

flexural deformations taking place in a localised plastic hinge at the column base. In
this case we obtain that the maximum acceleration at pier top is:
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where |, isthe plastic hinge length, H the pier height and b(Tf) is the ordinate of

the acceleration response spectrum for the pier predominant flexural period. The
simplification associated with this kinematic mechanism is valid for single column
bents in general, also for members that tend to oscillate in double bending, because
maximum curvature at column base is, in most cases, one order of magnitude greater
than that at column top, where yielding of steel seldom occurs.

Similarly, if the largest axial deformations take place within the plastic hinge
region, as it is for the plastic rotations, the maximum value of the impulsive (a,;)

component of the pier vertical acceleration can be written as:

) dmaxg .. .
8y, :lcpg;ﬁj%i H :aif gb(TfE?( %9% ©)
g 5 qoe S0 0%

The following remarks need to be made:

Eq. (9) has been derived by using the velocity reversal found with arigid section
kinematics hypothesis and therefore it should provide an upper bound estimate of
the axial impulses

Eg. @) should not be taken as an estimate of the structural response in the
vertical direction but rather as an estimate of the axial input associated to the
flexural response. However, large amplifications of this vertical input are
unlikely since these vertica impulses have the same frequency of the pier
flexural response, which is generally smaller than both pier and superstructure
vertical frequencies.

The numerical analyses presented above seem to show that, in spite of the
crude approximation used in ceriving Eqg. (9), it still encompasses the governing
variables of the problem. A comparison between the values found with Eq. (9) and
the results of the nonlinear analyses for the rigid deck model are presented in the
following Table 3.16. Horizontal and vertical accelerations found from time- history

analyses are indicated with by, and b,, respectively. The flexura period of the piers
T; has been calculated by using the secant flexural stiffness at maximum response

(average tiffness). The axial period T, instead has been computed using the cracked
elastic stiffness and the neutral axis depth at maximum response. In this case study,
both secant stiffness and neutral axis depth, were available from the results of the
nortlinear analyses; for design pupose instead, they should be calculated by using
the assumed structural ductility or the maximum expected displacement, if a
displacement-based design approach is being used.



Table 3.16. Numerical analysis versus prediction with Eg. (9)

Pier Height b by Ta Tt (k -1/2) ay,i b,/ a i
[m] [misec? | [m/sec’] | [sec] | [sec] [m/sec?] '

6 412 3.96 0.10 0.69 0.27 3.19 1.24

12 4,72 2.00 0.13 1.21 0.22 2.0 1.00

18 3.83 1.43 0.15 1.92 0.18 1.22 1.17

The results from Table 3.16 seem to indicate the soundness of the
assumptions used to derive Eq. Q) and the capability of it to provide a correct
estimate of the magnitude of these axial vibrations. This is demonstrated by the
stability of the computed values, which show a constant ratio with the results of the
nortlinear analyses, athough referred to piers of different period and different
response in both horizontal and vertical direction.

From the cases presented above it seems that little or no amplification of the
axial motion is found between pier base and pier top. However, it is important to note
that the axial input found with (9) might have been overestimated due to the
assumption of section rigid body motion.

Results obtained with Eq. (9) are strongly affected by the value assumed for
b(Tf ) In our case this value was given by the results of non linear time history

analyses (by,), whereas in design it must be found from a design spectrum based on
the maximum expected ductility (.e., behavior factor). Accuracy on a,; is therefore

strongly influenced by the accuracy of the design methodology in estimating the
maximum horizontal response.

3.35 Conclusions

Although experimental results are needed to confirm the predictions of the
numerical study presented herein, there is no doubt that a significant contribution to
the vertical acceleration in RC piers subjected to seismic excitation is due to the
rocking mechanism. This contribution is neglected in ordinary design, based on
linear modal analysis and response spectra. The intensity of this vertical acceleration
may instead be greater than the structural response to the vertical component of the
seismic input motion. In fact, the vertical acceleration associated with the rocking
mechanism is generated by the horizontal acceleration response of the pier which is
always greater than the horizontal ground motion input.

The effect of this additiona motion in the vertical direction can be
particularly severe on deck bearings, which may experience the maximum horizontal
shear forces associated with very low vertical reactions. This mechanism may
provide an additional explanation for the widespread phenomenon of bearing failure
and deck unseating observed during past earthquakes.



When proposing a simple predictive equation for the quantification of this
phenomenon, to be used together with the commonly accepted procedure of seismic
design based on modal analysis and response spectra, one should take into account
the following features of this mechanism:

Direct proportionality seems to exist between bending-induced vertical
oscillations and the horizontal acceleration of the pier, while the same cannot be said
for flexural damage (i.e., maximum displacement ductility).

The structural response to this axial input may have a larger impact than the
response to the vertica component of the seismic ground motion since it has the
same frequency as the flexural response.

Based on the preliminary investigations presented herein, it seems that eqg. (9)
provides a reasonable estimate of the vertical accelerations in bridge piers of current
use subjected to horizontal seismic input notion only. This equation could be used as
a starting point towards the definition of a design formula for the quantification of
this additional vertical component to be used in the dimensioning of bridges in
seismic areas. The effect of maximum ductility and pier cross section configuration
should be further investigated and possibly included in the equation. Results of the
present model would greatly benefit from comparisons with experiments performed
on shaking tables.
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4 UPGRADING OF BRIDGE PIERSWITH FRP

4.1 Propertiesand behavior of FRP-confined concrete

A first step towards the comprehension of the response of bridge piers
wrapped with FRP should aim at defining the behavior of concrete confined with
FRP sheets. Although saveral experimenta studies on this subject have been carried
out (Fardis and Khalili 1981, Saadatmanesh et al. 1994, Howie and Karbhari 1995,
Nanni and Bradford 1995, Seible et al. 1995, Picher et al. 1996), studies aiming at
obtaining reliable and accurae numerical models are still in a development phase.
An FRP jacket, as opposed to a steel one that applies a constant confining pressure
after yield, has an elastic behavior up to failure and therefore exerts a continuously
increasing confining action. The amount of this action depends on the lateral dilation
of concrete, which in turn is affected by the confining pressure. A mgor obstacle to
the development of a reliable concrete model is the lack of a smple analytical
expression describing the interaction between the laterally expanding concrete and
the confining device.

4.1.1 Basismode for unconfined concrete

A genera but smple constitutive model for unconfined concrete under
uniaxial compressive loading (Pantazopoulou and Mills 1995) is used as a basis for
the following developments. In this model, the uniaxial stress response f« of plain

concrete under compressive axial strain e is described by

1 1
B = Ec l+bep  “1+2be
The innovative aspect is that the area strain e, is taken as a measure of the internal
damage from cracking, which reduces the current secant modulus Eg., starting from
the initial tangent modulus E.. The constant b (here, the reciprocal of that given in

the original paper is considered) is a property of concrete and will be discussed
below. Note that in (1b) the assumption of radial symmetry (e 5 = 2¢€,) is adopted,

which allows to point out the dependence on the lateral strain €, . Sign convention is:
compressive e, and f( are negative and dilating €, and e, are positive.

The variation d the unrestrained lateral strain g, under the imposed axia
drain e, is evaluated with an experimentally derived formula (Figure 4.1), which,
under the assumption of radial symmetry, is expressed as

f¢= Egc € (1a,b)

2

€lim - €
e =-ne; - 1(1 2n)a ec0<"m—c>2 )
2 (&1im - 2€0)
where n= Poisson’s ratio, €, »- 0001 = limit axial strain beyond which

microcracking starts, and a e,, = axia strain at volume strain e, = e, +€, =0,



being a =09, 10 for unconfined concrete and €., » - 0002 = strain at unconfined

peak-stress fg,. The McAuley brackets () =0.5(x +|x|), indicate that the squared
term is only considered when e, <g;, -
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Figure4.1. Volume, area and lateral strain vs. axial strain for unconfined concrete.

Pantazopoulou and Mills (1995) proposed to evaluate the constant b from the
volume fraction of paste and the water-cement ratio. However, it seems more
convenient to express b in terms of readily available mechanical properties of the
unconfined concrete, such as f4,, e, and E.. Here, a formula is suggested that is

valid for awide range of different concrete types. To thisaim, it is noted that, since b
is a constant, i.e, independent of e., it can be caculated from (1b) in

correspondence to a convenient value of e, . Selecting €. = €., , one has
Ec/Eseco -1
2¢,

b= 3)

where

L. ) - 2
Eseco:b and elo:'neco_g_ ngaeco<e“m—eco>2 (4ab)
€co e2 g (elim ) aeco)

so that b is only dependent on the unconfined concrete properties g, €., E¢, n
and a. Alternatively, an explicit formula can be derived by letting a =10, for which
onehas g, = - %eco, and the constant b becomes:

1 E E 1
= - . c = . c . (5)
eo f& [T lewol
Note that b can be expressed as a function of only the unconfined concrete
strength fg, by assuming e., = - 0002and E, =5700,/|f§| (MPa):




b:lOO-SOO (f§inMPa) (6)
|l
even though it should be remarked that this formula is correct if the estimated value
of E; iscloseto the actual elastic modulus.

4.1.2 Concrete model with eastic confinement

Eq. @) models the latera expansion as function of the monotonic axial
compressive strain, only for the case of laterally unrestrained (unconfined) concrete.
In the case of confined concrete, this relation should be modified to account for the
confinemert pressure exerted by the confining device, either constant, as applied by
yielding devices (stedl), or increasing, as applied by elastic devices (FRP). It is clear
that, due to the experimental nature of the formula, any modification should be
substantiated by quite a large amount of experimental data for different levels and
types of confinements. An alternative and more general procedure is here proposed,
by which the lateral dilation of concrete is implicitly derived through equilibrium of
the dilating concrete and the confining device.

The starting point is a well-known stress-strain model for confined concrete
(Mander et al. 1988a,b), which has been extensively tested against experimental data.
The model, also of the f«(- €. type, isbased on the formula (Popovics 1973)

fo= 2T ™
r-1+x
—_ eC & d] — EC — fC%
X=—= €c =€ é’L+5 - 13 r=———— =—= (8
€cc ~ © g f& A Ec - Esec S €cc ®

where e, = compressive straln at confined peak strength f . The confined peak
strength f 4 isexpressed in terms of a constant effective confining pressure f; as

1& _ 554 /1 704 o N 105 9)
f$ f§

The effective confining pressure is calculated as function of the transverse steel
volumetric ratio r ¢ and itsyield stress  f, asfollows:

1 : 4 A
fi==k.r.f with  r.= 10
| 2ke s's S Sds ( )

where k, = arching-effect coefficient, s = spacing (pitch) of hoops (spiral), and dg =
diameter of hoops (spiral).

In recent years, researchers have attempted to extend Mander’'s model to
predict the behavior of concrete accounting for the effect of confinement provided by
elastic FRP jackets. A mgjor obstacle is that this model is based on a constant value
of the confining pressure throughout the loading history. In redity, passive



confinement increases as concrete expands laterally, its amount depending on the
stressstrain law of the confining device. For the case of steel transverse
reinforcement, the constant confining pressure assumption is realistic when the steel
isin the yield phase: therefore, Mander’s model correctly represents the behavior of
steel-confined concrete, except for the initial phase when sted is still eastic.
Conversely, FRP behaves elastically until failure, and the inward pressure increases
continuously, so that this assumption is not appropriate. Therefore, te following
approach is taken.
Egs. (1a,b) are rewritten as

félec. f) E.- Exc(ec )
Eo(e, f)=—c UV e e, f)=—s——sect®c: I/ (113])
(€ i) e (e i) SbE (ec1fl)
and merged into a single equation

e (em f, ) - Ece. - fc((ec' fI)

2b fde., f;)
where the dependence of the quantities f«( and g, on the current strain e, and the
confining pressure f, isrendered explicit. The constant b is evaluated as proposed in
the previous section.

Once ¢, is calculated from (12), the strain e; in the confining jacket can be
found (e.g., for the case of axialy loaded concrete cylinders it is simply: €; =€),
aong with its current stress f; = E;e;, with E; = the modulus of the composite
material of the jacket. The corresponding confining pressure f, can be evaluated
analogoudly to (10) as

(12)

1, 1 . _ A
fi=srifi=griEiem  with ;=

j T (13)

where it should be noted that k. =1 for jackets.

(e Js

—5{ set fi = fip atprevious step ]

calculate f&}(ﬁ) from (9) ’
I
‘ calculate current stress fc(( f&) from (7) ’
I
update lateral strain e,(fc© from (12) ’

‘ update f; from (13) ’

no l[ = f? ]I yes

Figure4.2. Iterative procedure.




This updated value of f, can be used for a new estimate of €, through (12),
giving rise to an iterative procedure (Figure 4.2) until f, converges to a stable value.
The whole procedure is repeated for each e, over the complete stress-strain curve.

This latter can be regarded as a curve crossing a family of Mander’s curves, each one
pertaining to the level of confining pressure corresponding to the current latera
strain. The stress-strain characteristics of the confining mechanism are explicitly
accounted for, while the lateral strain of concrete is implicitly obtained through the
iterative procedure. All numerical tests have shown that convergence is very fast.

4.1.3 Some considerations on modeling concrete confined with steel or FRP

The proposed model is here used to simulate the monotonic behavior of
concrete confined with three different jacket types. steel, carbonfiber (CFRP) and
fiberglass (GFRP). The purpose of these comparisons is to identify, mainly from a
gualitative standpoint, the main aspects of the confinement action mechanismsin the
three cases and compare the relative effectiveness of the three materials, before
proceeding to model the experimenta results.

The unconfined concrete properties of this example are: f¢, =35MPa, €, =

0.002, E. = 29,580 MPa, n = 0.20, and a = 0.90, therefore b = 303 through (3)

and (4ab). The FRP jackets consist of plies with 0° winding angle, whose
mechanical properties are listed in Table 4.1 along with those of stedl. It is remarked
that the same confinement volumetric ratio r ; is considered in the three cases. In this

example and the following tests, al quantities related to the FRP materia (E;, f,

and e€;,) are computed through the Classical Lamination Theory (see, e.g., Kim

1995) from the characteristics of each ply.
For steel-confined concrete, the ultimate compressive axial strain is computed
through an experimentally derived formula (Seible et al. 1995a):

r.f. e
e, = 0004 + 1.4% (14)
C

where f;,,e;, = steel yield strength and ultimate strain, respectively, and fg¢ =
confined concrete strength, computed with (9) and (13) with e; = e,,.

For FRP-confined concrete, the ultimate compressive axial strain of concrete
Is considered to be attained when:

€ =€ (15)
that is, when the lateral strain of concrete reaches the ultimate or allowable strain of
the FRP material (under multiaxial state) and the jacket fails (no progressive ply
failure is considered). This definition of failure exploits the characteristic of the
proposed moddl, in which the lateral strain is tracked stepwise. It will be used in the
parametric study presented in the next section to arrive at an explicit predictive
equation of the ultimate strain of concrete.



Table 4.1. Properties of confining devices ( Ej = elastic modulus, fju = yield or ultimate strength,
€jy= ultimatestrain, I' ; = confinement volumetric ratio).

Jacket material Fiberresin | Ej(MPa) f;,(MPa) e;,(%) r (%)
steel -- 204,000 440 12.0 1.60
Carbonfiber (CFRP) AS / Epoxy 138,000 1447 1.05 1.60
Fiberglass (GFRP) | E-glass/ Epoxy | 38,600 1062 2.75 1.60

In al the next graphs, differences in behavior are evidenced for the three
jacket types considered. All the stress and strain quantities are normalized with
respectto fg and e, respectively. In Figure 4.3 (top, left), the stress-strain relation

Is shown. Here, a fundamental difference can be observed: the FRP-confined
concrete shows a continuously increasing branch, as opposed to the steel-confined
one, which, after reaching the peak strength, decays on a softening branch. As
suggested by (b), concrete degradation is proportional to the latera strain: the
increasing confinement action of the elastic FRP limits the lateral strain thus
delaying the degradation; on the other hand, when steel yields, which occurs at 2.5
normalized axial strain, degradation of concrete takes place, because steel offers a
zero stiffness to the lateral dilation of concrete.

The idea emerges from these graphs, which will be confirmed in the next
sections, that CFRP should be used to provide concrete with higher strength increase
and moderate ductility, whereas GFRP should be used to provide higher ductility and
moderate strength increase. As regards the ultimate strain, and therefore the ductility
attained through the confinement action, it should be noted that, notwithstanding the
low values of €, of the FRP-jackets, in these cases the ultimate strain is comparable

or even greater than that obtained through the use of a ductile confining device, i.e.
steel. This supports the consideration (Mirmiran et al. 1996) that the energy-balance
approach (Mander et al. 1988a), which reckons the concrete ductility proportional to
the energy stored in the confining device, cannot be extended to the case of FRP. In
fact, the energy stored in the steel, the CFRP, and the GFRP jackets is, respectively:
51.8 MPa, 7.6 MPa, 14.6 MPa, and the latter two would give rise to ultimate concrete
strains significantly lower than those actually observed and obtained through (15).

In order to account for this different behavior, it has been proposed (Seible et
al. 1995b) to adopt the same predictive equation as (14) with a coefficient 2.5-2.8
instead of 1.4. However, in the following sections it will be shown that, when FRP
jackets are used, the ultimate axial strain of concrete is only weakly governed by the
ultimate confinement pressure (proportional to r; f;,), whereas it is mostly

dependent on the ultimate deformation. This is proven by the fact that the fiberglass-
confined specimen shows an amost twice as large deformability than the
carbonfiber-confined one, although the ultimate confinement pressure of the latter is
roughly 50% larger. Following these considerations, in the next sections, a different
predictive equation will be derived, consistently with the actual mechanics of the
confining device.
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Figure 4.3. Modeling of behavior of concrete confined with steel, CFRP and GFRP:
axial stressvs. axial strain (top, left), lateral strain vs. axial strain (top, right),
volume strain vs. axial strain (bottom, left), dilation rate vs. axial strain (bottom, right).

In Figure 4.3 (top, right), the lateral-axial strains relation is shown. It can be
observed that the branches slope depends on the stiffness of the confining device
(also observed in the previous diagram): steel and CFRP start with almost the same
dope, but after stedl yields at 2.5 normalized axia strain, it departs towards higher
lateral strains. GFRP shows a more stable behavior, in the sense that it starts with a
higher slope (meaning that concrete has a higher initia lateral dilation), which
however remains constant until the jacket fails. CFRP reduces the initial latera
strain, but its effectiveness has a shorter duration, due to its lower ultimate strain €, .

This can be better appreciated in Figure 4.3 (bottom, left), where the dilation
rate m =De /De. (lateral strain increment De, per axia strain increment De.) is

given as function of the axial strain. It is seen that when steel yields a discontinuity
occurs, due to the abrupt change in modulus; after this, the dilation rate increases
indefinitely. Conversely, for FRP, it constantly decreases towards an asymptotic
value. Note that the position of the point where the confinement action starts
becoming effective (i.e., when the branches depart from the unconfined one) depends
on the stiffness of the confining device: the GFRP-confined concrete departs later
than the other two. This is the point where a sufficient lateral pressure develops that
prevents the lateral dilation of concrete from increasing unrestrained.



In Figure 4.3 (bottom, right), it is interesting to observe from the volume
strain vs. axia strain curve that for the CFRP jacket the volumetric strain first
decreases, as expected, then reverts to zero and beyond a certain level of axial strain
the ever increasing confinement pressure curtails the volumetric expansion and
inverts its direction.
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Figure 4.4. Comparison of confinement effectiveness.

In Figure 4.4, left, the confinement effectiveness (lateral stress vs. axial
strain) for all three types of jackets is compared. It is explicitly shown what expected,
that is, before yielding the steel jacket exerts a higher confining action, which
however remains constant after yield, whereas the FRP jackets show a monotonically
increasing confinement, thus arriving at applying a confinement action twice (GFRP)
or thrice (CFRP) that of steel, with the same volumetric ratio r ;. In Figure 4.4, right,

it is interesting to compare the jacket effectiveness expressed in terms of ratio of the
lateral stress to the current axia stress. It is seen that the increase in the stedl jacket
effectiveness after yield is only due to the softening behavior of concrete, whereasin
the other two cases it is the elastic behavior of the FRP jackets that increases the
ratio. Here it should be evident how the two FRP materials reach amost the same
level of effectiveness, but at different axial strain levels, which again renders more
attractive the use of GFRP jackets that also exploit ductility while maintaining the
same effectiveness of CFRP jackets.

From these results some very preliminary conclusions can be drawn, which
however do not lack a certain generality, also considering that the values selected for
the FRP materials are deemed to be representative of a large class of composite
materials that are used for wrapping interventions. The effectiveness of an FRP
confinement is mainly to ascribe to the modulus and the ultimate strain rather than to
its strength. Thus, it can be affirmed that GFRP wrapping provides concrete with a
more “effective” confinement than CFRP (even more, if cost considerations are
taken into account) in terms of strength increase and ductility enhancement. These
considerations will be confirmed in the next sections where comparisons with test
results are carried out and predictive equations are devel oped.



4.1.4 Comparison with experimental results

Generally, in experimental tests performed on axialy loaded cylindrica
concrete specimens wrapped with FRP sheets, the measured quantities are: axial
stress, axial strain and radial strain (equal to the transverse strain in the jacket).
According to (15), failure of the wrapped specimen is expected when the radial strain
€, equals the jacket ultimate strain €;,,. However, experimental evidence shows that

failure mostly occurs at lower radia strains. This reduction is due to the fact that
FRP jackets undergo atriaxial stress state.

This is shown in Figure 4.5, where the concept of composite action is
introduced, which denotes the ability of the jacket of providing transverse
confinement and, at the same time, longitudina load-carrying capacity. This latter
depends on the bond interface characteristics, which in turn depend on a large
number of factors, such as stiffness of the glue layer between jacket and concrete
specimen, roughness of jacket and concrete surface, and bond transfer length.

transverse compressive stress
when in full composite action

axial tensile stress due
4 4 to lateral expansion

transverse compressive stress
gradient from confinement pressure

Figure4.5. Triaxial state of stressin FRP jackets.

In case of no composite action, the jacket only undergoes transverse strains
and therefore can only fail in extenson mode, due to either fiber collapse or
delamination between plies. Moreover, if one wants to consider the transverse
compressive stress gradient in the jacket due to the confinement pressure (Figure
4.5), failure occurs when the concrete radia strain €, reaches a value even dightly

lower than €. In case of full composite action, the jacket undergoes both transverse

and longitudinal strains. The extensional ultimate stress and strain are then reduced,
with potential microbuckling and delamination to develop. Thus, falure of the
Specimen occurs at even lower radial strains than in case of no composite action.

The above considerations will help the interpretation of the following
correlation studies, where three sets of tests on FRP-confined concrete specimens are
used as benchmarks for the proposed model.



4.1.4.1 Testsby Picher et al. (1996)

Tests were carried out on five concrete cylinders (152 mm in diameter and
304 mm in length): one unconfined and four confined with different configurations
of carbonfiber sheets. The sheets consisted of three layers, wrapped around the
concrete specimens with winding angles: [0°3], [0°, £6°], [0°, £12°] and [0°, £18°].
The unconfined concrete properties were: fg = 39.7 MPa, e,, = 0.002, E; =
31,500 MPa, n =0.20 and a = 1.0. Through (5) it was computed: b = 294.

Table 4.2. Results of experiments and of analyses with the proposed model.

experiment analysis
Cylinder Ej (GPa) fcu/ fc% €cu (%) €u (%) fcu/ fcb €cu (%) €y (%)
unconf. 0.0 1.00 0.20 0.65 1.00 0.20 0.65
C18 70.2 1.16 0.66 0.50 1.19 0.58 0.50
C12 77.4 1.24 1.03 0.64 1.26 0.75 0.64
C6 81.9 1.32 0.88 0.72 1.31 0.86 0.72
CO 83.0 1.41 1.07 0.84 1.35 1.01 0.84
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Figure4.6. Axial stressvs. Axial strain. Figure4.7. Axial stressvs. Radial strain.

The experimental ultimate strain of the CFRP-sheet with 0° winding angle
was 1.5%, which coincided with the value given by the manufacturer. However, the
concrete cylinders failled at lower radia strain values (0.84%), because the sheets
were in full composite action with the concrete (a thin layer of concrete glued to the
innermost composite layer was aways observed on the failed specimen). The
observed failure modes under composite action clearly show a load-carrying action
of the sheets in the axial direction, which reduces the ultimate stress and strain in the
radial direction. Therefore, in these correlation studies, the ultimate strains of the
sheets were taken equal to the values of the ultimate lateral strain measured in the
experiments (fifth column in Table 4.2), and not equa to those given by the



manufacturer. Therefore, the purpose of these comparisons regards essentially the
ultimate characteristics (i.e., strength and strain) of concrete.

As it can be seen in Table 4.2 and Figure 4.6 and Figure 4.7, the agreement
between analytical (solid lines) and experimental results (markers) is very
satisfactory.

4.1.4.2 Tests by Kawashima et d. (1997)

Kawashima et al. (1997) performed a set of experiments on cylindrical
reinforced concrete specimens, confined with carbon fiber sheet jackets with

different elastic moduli and volumetric jacket ratios r ; ranging from 0.5% to 1.3%.

The specimens were 200 mm in diameter and 600 mm in height, and were provided
with alongitudinal steel reinforcement ratio of 1%, with yield stress f,, =295 MPa,
whose contribution is here subtracted from all the experimentally measured stresses.
Tests were conducted on three series of four concrete specimens. @) unconfined, b)
wrapped with norma modulus (250 GPa) carbon fiber sheets, and c) wrapped with

high modulus (439 GPa) carbon-fiber sheets, two of which, specimens H3 and H4,
are examined here.
The average unconfined peak strength was f ¢, = 39 MPa, while the concrete

elastic modulus was inferred from the tests as E. = 20000 MPa. With e, = 0.0034,
the ssimplified expression (5) yields b = 207 for both specimens.

Table 4.3. Results of experiments and of analyses with the proposed model.

experiment analysis
spec.| Ej(GPg) 1 j(%) fjuMPa) e,(%) | fo,(MPa) €q (%) | feu(MPa) € (%)
H3 439 0.676 2810 0.63 70.1 1.15 77.2 1.39
H4 439 1.352 2327 0.53 89.8 1.52 90.8 1.45
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Figure4.8. Axial stressvs. axial strain. Figure4.9. Axial stressvs. radial strain.



In Table 4.3 the mechanical properties of the two specimens are listed, along
with the experimental results and those obtained from the analyses.

In Figure 4.8 and Figure 4.9, the curves for the axia stress vs. axial strain,
and axial stressvs. radia strain, respectively, are shown.

From Table 4.3 and Figure 4.8 and Figure 4.9, it can be seen that the
agreement between the proposed model and the experimental data is extremely
satisfactory for the axial stress vs. axia strain. In the axial stress vs. radial strain
graphs, there is a significant discrepancy in the earliest range of deformation, which
however does not affect the axial modeling; however, with increasing deformation
the differences become smaller. The ultimate point on the axial stressvs. axia strain
graph is rather overestimated for the specimen H3, while it is determined with
excellent accuracy for the specimen H4.

4.1.4.3 Tests by Mirmiran and Shahawy (1997)

A total of 24 concrete-filled FRP tubes and 6 plain concrete specimens were
tested. All 30 specimens were cylindrical (152.5 mm in diameter and 305 mm in
height), and divided in three batches with different strengths and water-to-cement
ratios. Here the results of the proposed model are compared to the third batch, with
the following properties: fg = 32 MPa, e, =0.002 and E. = 30,000 MPa. It was

estimated that n = 0.16 and a = 0.90, therefore, by using @b) it results: e, =
0.00128, and with (3) b = 343.
The FRP tubes consisted of a filament-wound angle-ply laminate of polyester

resin with unidirectional E-glassfibers at winding angle g = £15°. Direct interaction
between jacket and concrete in the axial direction was prevented. Three different
tube thicknesses were tested, with properties aslisted in Table 4.4.

Table 4.4. Properties of FRP encasing

Specimen EJ (MPa) r ](%) f]u(M Pa.) e]u(%)
6-layer tube 37233 341 696 1.87
10-layer tube 40336 5.51 565 1.40
14-layer tube 40749 7.87 550 1.35

Close to the ultimate load, local buckling and waving in the tubes were
observed, but shear failure was noted as the primary mode of failure. The observed
failure process clearly shows a composite action, with a partial ply failure
mechanism: the resin fails in transverse or shear stresses, but the tube still has a load-
carrying capacity left, until the fibers fail.

In Table 4.5 and Figure 4.10 through Figure 4.13, the experimental data are
compared to the results of the proposed model.



Table 4.5. Results of experiments and of analyses with the proposed model.

experiment analysis
specimen | fol(MPa)  €,(%) Mo Ny | fau(MPa) € (%) My My
unconf. 32.0 0.20 - - 32.0 0.20 - -
6-layer 59.95 3.45 1.364 0.435 64.69 3.42 1.047 0.429
10-layer 76.46 3.71 0.879 0.304 81.08 3.77 1.0 0.292
14-layer 84.40 4.24 0.774  0.233 91.85 4.13 1.0 0.262
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Figure4.12. Axial stressvs. volume strain.

Figure 4.13. Dilation rate vs. axial strain.

From Figure 4.10 it is seen that the ultimate strengths calculated with the
proposed model are higher (less than 10%) than the experimental values. On the
other hand, the stiffness of all three specimens at larger deformations is equal to the
experimental results and the ultimate axial strains show close agreement. In the
earliest range of axial deformation (from 0% to 1%) the stresses are overestimated,
while beyond this range the values get closer to the experimental ones, as aso



observed in Figure 4.11. In Figure 4.12 the significantly different volumetric change
can be observed: after reaching the peak strength, the specimen with 6 layers shows a
volume expansion, while the two others both have a volume contraction. In all three
cases the trend is correctly modeled. It should be noticed that, though the strain

values are not exactly determined, this has low influence on the axia stress vs. axial

strain behavior.

The observed differences may be explained by the way the specimens were
manufactured: the FRP encasing was made first, and then filled with concrete after
curing. It is suspected that the concrete shrinkage could have caused a gap between
encasing and concrete suface, thus delaying the deformation of the FRP encasing
upon loading of the specimens. In other words, in the early range of loading the
concrete laterally deformed at a high rate in an unconfined state, before reaching the
encasing and activating the confining mechanism. This can be inferred from Figure
4.13: the dilation rate in the range of axial strain of 0% to 1% as calculated by the
proposed model is lower (around 35%) than observed in the experiments, but beyond
the axial strain of 1% the values show very close agreement.

4.1.5 Predictive equations of FRP-confined concrete properties

In the previous section, the specimens collapse was identified with the
condition (15), at which the ultimate strength and strain of concrete were evaluated.
In al cases, the smulations were conducted by imposing, as ultimate strain of the
jacket, the value measured in the test and then the resulting ultimate strength f ¢, and
strain €., of concrete were compared with the experimental ones. In many cases, it
is useful to know in advance the value of the ultimate strength and strain, by means
of expressions that directly give the values of interest without carrying out the entire
test. The objective of this section is to develop practical formulae to evauate the
ultimate compressive strength and strain for concrete confined with FRP, which
should be useful for design practice.

For the case of stedl-confined concrete, €, is predicted through an energy-

balance method (Mander et al. 1988a), in which it is assumed that the increase in
strain energy capacity of compressed concrete due to confinement be provided by the
confining device strain energy capacity. The ultimate strain energy capacity of the
confining device is given by the area under the stress-strain curve times the
volumetric ratio. When this is attained, the confining device collapses and the
corresponding concrete strain is taken as the ultimate strain. However, it has been
commented (Mirmiran et al. 1996, and also above) that the energy-baance method
cannot be extended to the case of FRP confinement.

Two approximate formulae are developed for the ultimate concrete
compressive strain and strength, based on regression analyses of results obtained
through the model presented above. The observed behavior in experimental tests
suggests that the ultimate strength and strain have a direct dependence on: the
ultimate strain of the confining member e;,, the maximum confinement pressure



f4» and the concrete modulus E., while they have an inverse dependence on the
unconfined concrete strength fg,.
Thus, three independent parameters were identified:

lu= :_; €ju Ec = %
and were made to vary within their respective extremes, identified as: f,, =0, 2,
ej, =0, 003, E; =700, 1200. The upper bound of f;;, though unusualy high,
can occur for example in a 30 MPa concrete cylinder of 100 mm diameter, wrapped
with a2 mm thick jacket, having an ultimate strength of 1500 MPa. Therange of €,
was selected considering a considerable amount of experimental data on composite
materials, while the range of E. was selected considering a 20% variation of the
concrete’' s effective elastic modulus with respect to the conventiona average value of
57OW (MPa), for arange fg =30, 50 MPa. Two minor assumptions were
made: e, =0.002, and a =1 (the latter allows use of (5) for the determination of

b), which are however vaid for most concretes.

From the resulting 600 cases, the two following predictive equations were
obtained:

(16)

f§ = f(gg(o.2+ ﬂu) (17)

€y = €oo (2 +1.25 Ecejy 4/ fiu ) (18)
Note that for no confinemert ( f,,= 0) the resulting parameters are those of an
unconfined concrete with e, =0.004 and ultimate strength equal to 20% of the peak

strength, which is the value usually adopted for it. It is again emphasized that, for the
considerations given above, the value of €;, to input in (18) should be computed

from f;,/E; , and not taken from the manufacturer.

4.1.6 Agreement with experiments

The values of the ultimate strength and strain obtained with the predictive
equations (17) and (18) were compared with several experimental data (Picher et al.
1996, Harmon et al. 1995, Kawashima et al. 1997, Mirmiran and Shahawy 1997,
Karbhari and Gao 1997). The results are shown in Figure 4.14 and Figure 4.15.

From Figure 4.14 it can be seen that the predictive equation for the ultimate
strength shows a satisfactory correlation with the experiments, with the only
exception of two tests conducted by Harmon, which were carried out on high
strength concrete, outside the range considered in the parametric study. Excluding
these two cases, the maximum error in the predictions was 9%, while the average
error was 6%.
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Figure 4.14. Comparison of (17) with experimental data of ultimate strength.

In Figure 4.15 the ultimate strains predicted with (18) are compared with the
considered tests. In this case the error is higher (about 14% in average) but still

acceptable.

From the above results it is concluded that both (17) and (18) can be used
with a reasonable accuracy to predict the ultimate strain and strength of normal
strength concrete confined with FRP.
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Figure 4.15. Comparison of (18) with experimental data of ultimate strain.



4.2 Response of FRP-wrapped sections

The next step towards the development of a design equation for determining
the optimal thickness of FRP wrappings to enhance the ductility of existing r.c.
bridge piers is the insertion of the above-developed FRP-confined concrete model
into a fiber section model.

The fiber section model allows to trace the behavior until collapse of r.c.
sections under constant axial load (as is the case for bridge piers under earthquake
loading, if the vertical component of the seismic action is neglected) and imposed
curvature (Monti et a. 1996). Sections are discretized into fibers of unconfined
concrete (cover), confined concrete (core), steel rebars and FRP jacket.

» |DI |DE

W

Figure 4.16. Model of fiber section. Section without wrapping (right), and FRP wrapping (left).
The symbols are: DI= Diameter, C= Concrete cover thickness, NB= Number of bars,
NR= Number of radial subdivisions, NA= Number of angular subdivisions, DE= External diameter.

Asshown in Figure 4.16, |eft, in the initial state, before upgrading, the section
is made of fibers representing the concrete cover, the concrete core and the steel bars.
In the upgraded state, right, an FRP jacket is added around the initial section, under
the assumption of perfect bond on the concrete surface. It is well known that FRP
jackets apply a deeply different confinement effect with respect to steel confining
devices. these latter apply a constant confinement pressure after yielding, while FRP
exerts a continuously increasing confinement pressure. In the presence of FRP
confinement, the existing confinement models are inadequate to represent the
continuous interaction between the expanding concrete and the elastic FRP jacket,
and therefore the above-presented FRP-confined concrete constitutive model
(Spoelstra and Monti 1999), which correctly accounts for such a peculiar behavior,
has been implemented in the fiber section model.

A problem regards the distribution of the confining pressure over the cross
section. Let us consider a circular section with a linearly distributed axia strain field
imposed on it. It is assumed that, at a given distance from the section’s centroid, the
lateral strain can be calculated, by means of the proposed model, from the
corresponding axia strain. On the circumference, this allows to calculate the
transverse strain in the jacket from the corresponding radial strain, and therefore the
stress in the jacket and the induced confining pressure. This amounts to assuming



that the confining pressure only depends on the distance from the neutral axis (Figure
4.17).

This assumption has been verified in numerical analyses conducted in the
linear range (Monti and Spoelstra 1997) giving results that corroborate the chosen
simplified approach. More refined analysis are being carried out with advanced
nonlinear FE codes to account for the nonlinear behavior of concrete under triaxial
stress states.

/1] / J

- + / distance y \\ - -

£ \
i |
\ |
\ /

axial strain lateral strain confining concrete
pressure strength

areas with equal confining pressure

Figure4.17. Calculation method for confining pressure fI and concrete strength S ; .

In most cases, retrofitting of existing bridge piers only concerns enhancement
of ductility, while normally flexura strength is adequate. It is believed that
composite action between jacket and pier should be avoided as much as possible,
since it generally enhances flexura strength to a larger extent than ductility. Also, a
study by Orito et al. (1987) reported that unbonded concrete-filled steel tubes would
perform better than bonded tubes, because in the former case the jacket does not
undergo longitudinal stresses. Therefore, the jacket will not buckle, and will continue
confining the pier up to its maximum strength.

These considerations imply that a fiber winding-angle of O is the most
effective, when no composite action is foreseen, even though, in redlity, a certain
degree of composite action between pier and FRP jacket cannot be excluded a priori,
so that, in general, it is to be expected that, with 0° winding-angle, the jacket will fail
under longitudinal tensile strains, due to separation of parallel fibers. A jacket made
of severa plies with different winding-angles would be a more practical option.

Specia care should be devoted to the shear capacity of a retrofitted pier.
Because there will always be some degree of composite action, the flexural strength
will increase. Since the shear capacity should always exceed the flexural capacity, in
order to avoid brittle shear collapse, it should be checked that the shear capacity is
still adequate after retrofitting.

As an example of retrofitting a pier with an FRP jacket, a moment-curvature
analysis has been carried out with the programs CYRUS (Monti et al. 1996).

The cross-section of the selected pier, taken from another parametric study
(Mirmiran et al. 1996), is shown in Figure 4.18.
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Figure 4.18. Typical reinforced concrete pier section.

The pier is 1500 mm in diameter and has 36@40 mm rebars (total area: 45,240 mn?,
with r ¢ = 2.94%) having yield strength 440 MPa and ultimate strain 12%. The
unconfined concrete properties are: fg= 35 MPa and E,= 29,580 MPa. The
transverse reinforcement consists of £16mm ties at a spacing of 80 mm (r .= 0.72%).

Table 4.6. Equivalent mechanical properties of CFRP/GFRP jacket,
with corresponding ultimate axial strain of concrete.

q Ex Sx+ 6<+ Ey Sy+ ey+ €y (t=9
(degree) | (MPa) (Mpa) (%) (MPa) (MPa) (%) mm) (%)
[75, 15] 61760 953 1.54 21971 570 2.59 3.10

bending moment [kNm]

0 0.02 004 0.06 008 0.1
curvature [1/m]

Figure 4.19. Numerical monotonic analyses:
1- full composite action, 2- no composite action, 3- as built.

The pier is confined with layers of carbonfiber/epoxy composite material,
with fiber winding-angle of +15°, and with layers of fiberglass/epoxy, with fiber
winding-angle of +75°. For the sake of example, ajacket thickness of 9 mm has been
chosen: this value is much larger than those usually adopted in practice, but it allows
to amplify the differences between the different behaviors, before and after



upgrading. Thus, with a total thickness of the jacket of 9 mm and using the CLT
relations, the mechanical properties of the jacket result as in Table 4.6, where the
indices x and y denote the directions orthogonal and parallel to the pier longitudinal
axis, respectively; the corresponding ultimate strain for concrete, as evaluated with
the proposed model, is also shown.

The results of the monotonic analyses are shown in Figure 4.19, where the
effects of having full composite action or no composite action can be observed. In
Table 4.7 the quantities of interest for upgrading (moment and curvature) are listed
aong with the resulting ductility factors.

Table 4.7. Curvature ductility factors for the retrofitted pier.

Pier My [kNm]  fy [1/m] | My[kNm]  f [1/m] ny
As-built 12848 0.0031 17418 0.0320 10.3
Full comp. 14589 0.0030 28254 0.0283 9.4
No comp. 13753 0.0030 22072 0.0820 27.3

Table 4.8. Properties of the different confining mechanisms.

Column ry Ej fy or fu €ju=Catu €cu
(%) (MPa) (MPa) (%) (%)
As-built 0.72 200000 400 12.0 1.58
Steel jacket 2.67 200000 400 12.0 3.60
CFRP jacket 2.13 87600 955 1.10 2.75
GFRP jacket 1.60 38700 832 2.10 3.90
20,000 20,000r
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Figure 4.20. Cyclic moment (kNm)-curvature (1/m) responses for different jacket types.



In Figure 4.20, the cyclic behavior of the as-built pier and of the retrofitted
pier without composite action is shown. The ultimate concrete compressive strains
€. are computed by a single-iteration with the procedure described before. It can be
seen that the retrofitted pier shows very stable hysteresis loops, until failure occurs at
a curvature ductility factor of about 27. The CFRP layout results in a higher strength
but less ductility than the GFRP layout, as expected.

421 Assessment of the FRP-confined section model

The section model shortly presented in the previous paragraph has been
extensively verified against experimental tests on r.c. circular bridge piers, wrapped
with FRP jackets. Here, two of those tests are presented: one by Seible et al. (1995c),
the other by Saadatmanesh et al. (1996). Each test was performed on two specimens:
one “as-built”, and the other “upgraded” with GFRP jackets. The geometrical and
mechanical properties of the “as-built” specimens and of the composite materials
used for upgrading are listed in Table 4.9. The pier height h denotes the distance of
the pier cap centroid (where the load was applied) from the top of the footing.

Table 4.9. Geometrical and mechanical parameters of the“ asbuilt” and “ upgraded” specimens
considered in the assessment of the FRP-confined section model.

Geometrical and mechanical properties Seible et al. 1995¢c Saadatmanesh et al. 1997

“As built” specimens

Pier height h (m) 2.90 1.892
Section diameter D (m) 0.608 0.305
Reduced axial load n 0.046 0.176
Unconfined concrete strength f & (MPa) 44.3 34.5
Steel yield strength fsy (MPa) 293 (bars), 403 (ties) | 358 (bars), 301 (ties)
Longitudinal reinforcement ratio I 0.025 0.0248
Transverse reinforcement ratio I' 0.003 0.0017
Confinement pressure of hoops f, (MPa) 0.484 0.256
Composite materials of “upgraded” specimens
Ultimate strength fju (MPa) 793 298 *
Ultimate strain €, 0.023 0.016 *
Young's Modulus E; (GPa) 33.78 18.6
Jacket thickness tj (mm) 3.81 4.8
Volumetric ratio of jacket r i 0.0247 0.063
Confinement pressure fI (MPa) 9.8 9.4*

* This test was interrupted before the jacket failure. The values reported in the table refer to that stage.
Ultimate values, not attained, were: fju =532 MPa, €, =0.029, and f, =167,




In the above experimental studies, the response is given as lateral load vs.
lateral displacement, while the fiber-section model yields the moment-curvature
response a the pier base section. In order to compare the results in terms of
displacement, the following relation is used to pass from curvature ductility d, to

displacement ductility d:

dy=1+3(d_ - 1) pr éﬁ 0.5%’9 (19)
g

where L represents the shear span to the plastic hinge. The plastic hinge length, |,

was directly measured in the tests by Saadatmanesh et al. (1997), while in the tests
by Seible et al. (1995c), |, wastaken as (Priestley et al. 1996):

I, =0.08L+0.022f  >d, (20)
where f, and d, are the yield strength and bar diameter of the main column
reinforcement, respectively.

Based on the above considerations, numerical tests were carried out and
compared to the experimental results Figure 4.21). All piers were tested under

increasing cyclic quasi-static lateral loads, while here only the envelopes are
compared. In Table 4.10 the experimental and numerical values of the ultimate load

F, and of the maximum displacement ductility d, are listed, along with the error
committed by the mode.
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Figure 4.21. Comparison of experimental (dots) and numerical (solid lines) results
for the“ asbuilt” and “ upgraded” piers
by Seible et a. (1995c) (left) and by Saadatmanesh et al. (1997) (right).



Table 4.10. Comparison between experimental and numerical results of the“ asbuilt” and the
“upgraded” piers. Errorsin the prediction of ultimate load Fu and ductility dd .

Ultimate load F, Seible et al. 1995¢ Saadatmanesh et al. 1997
and ductility dd Experiment  Numerical | Error % | Experiment  Numerical | Error %

As- | F, (kN) | 532,50 532.69 | 0.0 64.00 63.14 | -1.3
built d3v 3.10 3.88 25.2 4.00 3.93 1.7

Upgrad | F, (kN) | 566.40 593.66 | 4.8 | 84.00 80.82 | -3.8

ed o}l 12.14 12.79 5.3 6.50 6.76 4.0

From these results, it can be concluded that the fiber section model with FRP
confinement gives a satisfactory interpretation of the behavior of circular bridge piers
confined with FRP jackets.

4.2.2 Parametric study on FRP-confined sections

A parametric study has been carried out with the program CYRUS (Monti et
al. 1996), on the same section considered above, to examine the influence of
different configurations of the FRP externa reinforcement on relevant response
quantities, such as: flexural strength, ductility and failure mechanism.

The proposed confinement model was used to determine the response of the
concrete fibers. The Classical Lamination Theory (CLT) was used to evaluate the
equivalent stiffness and ultimate strain and strength of the jackets for both the
longitudinal and the transverse directions.

Two limit situations were studied, among other factors depending on the
stiffness of the glue layer between jacket and pier:

- full composite action between jacket and pier. This situation corresponds to
perfect bond provided by the glue layer,
no composite action between jacket and pier. This situation corresponds to a glue
layer that only provides transverse bond, so the jacket exerts only a confining
action.

It should be noted that, as opposed to the former case where an infinitely stiff
glue layer in both directions is considered, the latter situation corresponds to having a
glue layer that is infinitely stiff in the transverse direction and infinitely flexible in
the longitudinal direction. Thisis of course a speculative case, that has the purpose of
defining a lower bound for the composite action, since the former one defines an
upper bound. The real response should be in between these two bounds. Further
studies are necessary to include the effect of the stiffness of the glue layer in the
model. However, for practical purposes, since it is recognized that the commercially
available epoxy resins provide quasi-perfect bond in both directions, the former case
can actually be considered as a satisfactory representation of areal behavior.

The following assumptions were made:



The jacket exerts its action until the maximum theoretical strength and strain,

The compressive elastic moduli of FRP materials are equal to the tensile ones,
The failure criteria of the jackets are based on the ultimate strain theory. In the
analyses without composite action, the jackets fail when the equivalent transverse
ultimate strain is reached. In the analyses with full composite action, the jackets
fail when either the ultimate transverse strain or the ultimate longitudinal
compressive/tensile strain is reached,

The failure point of the pier was determined by first ply-failure of the jackets.
That is, no subsequent stress redistribution among the remaining plies is
considered,

The contribution from concrete tensile strength is ignored, as well as shear
stresses on the section and possible bond-dlip of the rebars.

The parameters considered in this study were the jacket thickness and the
fibers winding-angle. Confinement was provided by an external FRP jacket made of
several plies with £q fiber winding-angle. Four different jacket volumetric ratio
(rj=0,0.016, 0.024 and 0.032 mm) and seven winding angles (q = 0, 15, 30, 45,
60 and 90°) were analyzed. For the jacket material carbonfiber/epoxy was selected.

As regards the failure criteria, the envisaged mechanisms arein Table 4.11.

Table 4.11. Failure mechanisms.

Full composite action Without composite action
1. Crushing of concrete 1. Crushing of concrete
(transverse tensile failure of jacket) (transverse tensile failure of jacket)
2. Longitudinal tensile failure of jacket 2. Tensile failure of reinforcing steel
3. Longitudinal compressive failure of jacket
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Figure 4.22 Interaction diagrams with full composite action.
Effect of winding angle g variation for i= 0.016.
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Figure 4.23. Interaction diagrams without composite action.
Effect of winding angle q variation for r i= 0.016.

The results are presented in terms of normalized interaction diagrams with
respect to the unconfined properties: the ratio of confined to unconfined axial force
(P/R,) is plotted versus the ratio of confined to unconfined flexural strength
(Mg /Mg, ) and versus the ratio of confined to unconfined ultimate curvature
(key/Keo). The unconfined pier properties arer Ry = fo Ay = 61,850 kN,
Mg, =10,454 kN and k., =0.0194 1/m.

Figure 4.22 and Figure 4.23 show the axial load/flexural strength and axial
load/ultimate curvature interaction diagrams for r ;= 0.016 and various winding-

angles, with and without composite action. In Figure 4.22, it is noticed that under
pure bending (P/R,,=0), an enhancement of the flexural strength is obtained for all
winding angles, with a maximum of almost four times when the fiber winding angle
IS 90°. Also for as regards the ultimate curvature, there is an increase which is more
sgnificant for higher axia load (for example, for P/R.,=0.5, the ultimate curvature
Is increased by a factor that varies from 3 to 4). On the other hand, looking at the
case of pure axial load, it is observed that the sectional axial strength increases by
reducing the winding angle: with g=0° the increase is more than three times. In the
cases where both the axia load and the bending moment are acting on the section,
the shape of the interaction diagrams changes according to the dominant failure
mechanism. In the range of low axia loads (say, P/R.,<0.75), which is more
interesting from the practical standpoint, it should be observed that for the cases with
gq=75°, 90°, the flexural strength decreases for increasing axial load, as opposed to
the other cases where the behavior islike one would expect. Thisis essentially due to
the fact that collapse of the section occurs due to longitudinal tensile failure of the
jacket, before the reinforcing bars have completely exerted their ductility. It can be
concluded, therefore, that jackets under full composite action are better suited for
flexura strength increase instead of ductility enhancement.
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Figure 4.24. Interaction diagrams with full composite action.
Effect of r i= 0(1), 0.016 (2), 0.024 (3), 0.032 (4) for winding angle of 45°.

In Figure 4.23, under pure bending ( P/ R, =0), there is no significant increase

of flexural strength (at most 1.5 times the unconfined one), but the available ductility
sensibly increases as the winding angle decreases (up to 5.5 times when g=0°, 15°,
30°), attaining much higher values than the previous case where full composite
action is considered. Note that in this case the shape of the interaction diagrams does
not change with the wrapping configuration: they are simply scaled up. This reflects
the fact that the failure mechanism is aways due to concrete crushing, as opposed to
the previous case where the jacket can aso fail due to longitudinal strain. As
expected, it is observed that significant improvements are obtained only for winding
angles less than 45°. In this case, the conclusive remarks is opposite than that of the
previous case: jackets without composite action are better suited for ductility
enhancement instead of flexural strength increase. As already observed, the actual
behavior of ajacketed section isin between the two cases analyzed above.

In Figure 4.24 the effect of the jacket thickness is studied for a winding-angle
of 45°, with full composite action. It is seen that significant ductility increase is
obtained above values of P/R,=0.2, while for lower vaues, the ductility is

essentially the same as that of the unconfined section. It is important to notice that



for low values of the axia load, any increase in thickness brings no significant
improvement to the response.
From the analyses performed, the following conclusions can be drawn:
The failure mechanism is the most important concern in the evaluation of flexural
strength and ductility. The observed failure mechanism is strongly dependent on
jacket thickness, winding angle and axial load level.
Composite action does not significantly improve the pure axial capacity; it can
even impart a decrease, due to the relative poor compressive behavior of the
jackets.
Composite action improves flexura strength for the larger (>45°) winding
angles. The source of increase is the direct load-carrying capacity of the jacket,
rather than its confining action. This further explains why larger winding-angles
result in higher flexural capacity. For (very) high levels of axia load and small
winding angles, flexural strength is decreased.
Composite action strongly decreases the available ductility for smaller (<45°)
winding-angles, for the larger winding-angles and high axia load levels
(P/Py, >1.0) the decrease is less apparent or even can revert to an increase.

As the thickness of the jacket increases, the axia and flexural capacity and the
available ductility al increase, but the rate of increase depends on axial load and
the presence or absence of composite action.

The winding-angle has no significant impact on pure flexural capacity of the pier
without composite action, but a large decrease in pure ductility is occurring for
increasing winding-angles. With composite action, an increased winding-angle
strongly increases both pure flexural strength and pure ductility.

4.3 Design criteriafor upgrading through FRP wrapping

In this section, a design equation, which was the final objective of the above
developments, is proposed to determine the optimal thickness of FRP jackets, for
enhancing the ductility of existing reinforced concrete bridge piers, having circular
cross-section. The design procedure stems from the definition of an upgrading index,
given as the ratio of the target-to-available ductility at the pier base section, to be
attained through FRP jacketing. The available ductility is that identified through the
usual assessment procedures on the r.c. member to upgrade, while the target ductility
Is evaluated based on the expected actions on the bridge. The upgrading index is
initially defined in general terms and is subsequently extended to the case of piers
built in seismic regions. It results in a simple expression in terms of easlly
computable quantities, such as the ultimate strain and the peak strength of concrete,
before and after upgrading. A parametric study on old-code-designed bridge piers
sections, upgraded with either glass or carbon fiber jackets, is performed, based on a
fiber-section model, equipped with a newly developed FRP-confined concrete model.
This study shows that the index, despite its simplicity, yields excellent predictions of
the ductility increase obtained through FRP wrapping, and it is therefore used to
develop a design equation. Such equation allows to design the optimal thickness of



FRP jackets in terms of: the desired upgrading index, the mechanical characteristics
of the selected composite material, and the quantities defining the initial state of the
pier section. The design procedure has been applied to available experimental tests of
a scaled bridge pier wrapped with FRP and tested to failure, and it has demonstrated
to be very effective.

4.3.1 Upgrading index of FRP-wrapped pier sections

The final objective of the design procedure here proposed is to find an
analytical correspondence between unknown design parameters (e.g., jacket
thickness and FRP material type) and a measure of the intervention effectiveness. In
general, the upgrading of structures located in seismic areas aims at improving the
performance of the resisting elements by modifying their strength and/or ductility
and/or stiffness. This latter is more difficult to obtain (and in most cases it is not an
objective of the intervention) when using jackets and wrappings, so the member
stiffness can be assumed as constant, before and after the intervention.

In most cases, upgrading interventions aim at increasing the performance of
certain critical sections along the member. For those simple cases where the pier is of
the single-bent type, the intervention is usually localized at the pier base, so that its
effectiveness can be measured, without loss of generality, with reference to some
critical section. A section upgrading index | . is therefore introduced, which

measures the increase from the @vailable) ultimate moment M #? and curvature
ductility d2® of the “as built” section, to the (arget) ultimate moment M™ and

tar

curvature ductility dS, to be obtained through the upgrading, and defined as
follows:

tar tar
= ,\'\:Tjiva 21)
(o

The quantities at the denominator should be determined through a preliminary
assessment procedure, while those at the numerator are consequent to the evaluation
of the expected load actions. When the index is lower than 1, no upgrading is
necessary. Vaues of the index greater than 1 imply the necessity of upgrading. This
latter Situation can arise either from a reduction of the denominator (damaged
sections) or from an increase of the numerator (increase of the action) with respect to
the original design conditions.

The index (21) can be simplified, if one considers the most common case of
unidirectional fibers wrapped (sometimes automatically) at 90° with respect to the
column axis. Such upgrading interventions always result in relevant increases of
section ductility, while only determining limited increases in flexural strength. This
also emerges from the parametric analyses that will be shown in the following
section, where, for the piers examined, an average strength increase of 10% with a
maximum of 20% was observed. As a consequence, for design purposes, the
upgrading index (21) can be simplified as:



tar
— dC

lsec =

- (22)
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This expression alows to determine the value of the upgrading index, once
the available ductility has been assessed and when the target ductility, that is, the
most probable required ductility, has been prognosticated. It should be recognized
that:

_ d? (FRP jacket properties)
42 (assessed pier conditions )

that is, the available ductility depends on both, the pier geometrical and mechanical
properties, and the axial load, while the target ductility depends on the properties and
the thickness of the FRP jacket to be designed. Thus, it would be expedient to
express the above equation in such a way that the sought FRP jacket properties can
be easily determined, once the available ductility has been assessed and a value of

the upgrading index has been established. This is exactly the objective of this work,
which will be pursued in the following sections.

(23)

4.3.2 Mechanical Model of the Upgrading I ndex

A simple mechanical model of acircular r.c. pier section is here adopted, with
the aim of arriving at an expression of the upgrading index (22) in terms of basic
geometrical and mechanical quantities.

Figure 4.25. Smplified model of the section.

With reference to Figure 4.25, it is observed that the section upgrading index
(22) can be expressed as.

tar
L lewe) o
(C U/C y , ava
where the, either target or available, sectional ductility d. is expressed as the
ratio of the ultimate curvature c, totheyield one c .



From several numerical analyses performed and presented in the following
section, it has been observed that the yield curvature is not significantly atered by

the presence of the FRP wrapping, therefore it can be assumed that ctyar vy ,and
the index simplifies to:

tar
Cc

l e = C‘E"a (25)

Using the definition of curvature, under the assumption of section planarity,
the above equation can be written as:

I _ eg'tr yava
sec ytar edva
Cu
where e, is the ultimate concrete strain and y is the neutral axis position,
both considered in the initial (ava) and the final (tar) situation.

eZ'? in (26) is the initialy available concrete ultimate strain when only the

steel hoops confinement is present, and it can be computed through a widely
accepted experimentally-derived formula (Seible et al. 1995b):

(26)

1.4r 4 fy eq,

g (27)
where r o = 4A, /(s, dy) is the volumetric ratio of steel hoops (spiral) having area
Ay, spacing (pitch) sy, and diameter dy; and fgy, ey, = steel yield strength and
ultimate strain (usually 0.12), respectively. The confined concrete peak strength
f&=fgxf¢ is the product of the unconfined concrete strength f{ and the

normalized confined strength f‘gg (Mander et al. 1988):

f¢=2254/1+7.94f, - 2f, - 1.254 (28)

where f, = f,/f$ = normalized confining pressure, with:

e = 0,004 +

1
fi =Skl s fy (29)
where k. = tie-by-tie arching-effect coefficient (usually 0.8).

far

€ 1IN (26) is the target concrete ultimate strain to be attained through FRP

confinement, and it can be computed through a recently proposed formula (Spoelstra
and Monti 1999):

€, :eco(2+1.25 E.e ﬂ) (30)

¢ Cju



where e,, = unconfined concrete strain at peak stress (usualy, e, =0.002),
E. =E./f$§ = concrete normalized initid modulus, e;, = FRP jacket ultimate
strain. In this case, the confining pressure f, can be evaluated analogoudly to (10) as:

1 1

f, =50 fju:Erj E e (31)
where r | =4 /dj is the volumetric confinement reinforcement ratio of an FRP

jacket having thickness t; and diameter d;. The mechanical characteristics of the
FRP jacket are: the ultimate strength  f,,, the elastic modulus E; and the ultimate
strain e, . On passing, note that k, =1 for jackets.

jur

Having determined the two strains in (26), the two remaining quantities; y™"
ava

and y*™° need be found. To this purpose, consider Figure 4.25. The neutral axis
position y can be found through equilibrium considerations, writing:

a fgAY)+ Ty A(y)- foAl(y)=nA, 1§ (32)
where a = equivalent stress-block coefficient, A.(y) = compressed area of concrete,
A (y) = area of steel under compression, A'(y) = area of steel under tension, n =
reduced axial load, A, = grossareaof concrete. Note that both steel areas have been
attributed the yield strength f, : thisis not strictly exact, in fact, the steel bars close

to the neutral axis are till elastic; however, their contribution approximately cancels
out in the equilibrium and does not affect the correctness of the formula. It is
important to notice that the areas of both concrete and steel depend on y. In general,
equation (32) can be written as:

a fg(a RO 1y (AR G)- (AR T)=nA fg 63
where A, = total steel area The F's are functions giving the variation of the
respective areas in terms of the neutral axis position (here normalized with respect to
the section diameter d: y =y/d; aso note that the internally confined diameter is
taken approximately equal to the externa diameter). Note that it must be:

F: (V) =1- F; (), therefore, cdling F; © F,, and dividing both membersby A, fg
and rearranging, one obtains:

a f¢F.(y)+2mR(y)=n+m, (34)
where f¢ = normalized confined concrete strength defined in (9), and
m = (Asfsy)/(Agr fc(o) = mechanical ratio of longitudinal reinforcement.

The exact expressions for the F functions are:



F.(7) == [2arcsin (1- 27)- sin 2arcsin (1- 2]

P (35)
F(y)=ain(1-25)

which clearly hamper the search for a closed-form solution of y. Thus, in order to

facilitate the determination of y in 34), an approximation is introduced, whose

consequences will be examined later. The above F functions are written as the
product of alinear quantity times the corresponding error function E:

F(y) » VE.(9)

F(y)» E:(9)

Substituting the above functions into (34), the following approximate
equilibrium equation is obtained:

(36)

a 1§ Y>E(7)+2m y>E(7)» n+m, (37)
from which the sought value y isfound as:

y» nem (38)
a f € (y)+ 2m *E4(Y)
The final step requires substituting @8) into @6) and, by considering the
initial (ava) and the fina (tar) conditions, the expression for the upgrading index is
obtained as:

S, s g ) an e )

e’ n'am at i@ EN?(y)+2m ET(Y)

where it has been obviously considered that m, =¥ ° n{". Note that, in general,
athough the FRP-confined concrete diagram has a different shape from the steel-
confined one (see, for ex., Spoelstra and Monti 1999), it was ascertained that

a®»a' and therefore a =a®?=a" =0.8 is here assumed without loss of
accuracy. Moreover, if one also considers the probable case of no increase in axial

load (N2 =n'?"), the index simplifies to:
L a aigeR(y)eam 2 (y) "
el af g HED(y)+2m Er(y)
where €2 is obtained through (30), while €22 through (27); f$* is obtained
through @) with f, from (13), while f€"® is obtained through () with f, from

(20). The treatment of the error functions E will be deat with in the following
section.

(39)




4.3.3 Considerations over the error functions E

The upgrading index in @0) embodies the approximations introduced with
equations (36). It should be clear that the choice of the error functions E is a key
point in the development of an explicit expression for I.: in fact, smple
expressions of the E’'s would lead to a ssimpler upgrading index, but possibly to
unacceptable errors, whereas more accurate expressions of the E's would possibly
improve the index accuracy and reliability, but probably at the cost of a higher
complexity of its expression.

1 1
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Figure 4.26. Functions F, (left) and F (right) in (36) resulting from two approximation levels:
linear (41) and nonlinear (42), compared with the exact expressions (35).

Two possible choices of the error functions have been considered:
Eq(y)=1  Eu(y)=1 (41)

£ ()= 427 =

Eu(7)=—= (42)
J2y
where equations @1) imply that a linear approximation of (36) is accepted, while
equations @2) imply a more refined (nonlinear) approximation. Figure 4.26 shows
the F functions of (36), as resulting from the adoption of the error functions above,
compared with the exact expressions of (35). Note that equations (42) are valid for
0 £ y £ 0.5, which however brackets the neutral axis position range at collapse.

Thus, the index results, for the case of linear approximation (41), in:

etar a ]?%ar +2n.g
- T )

eCU a ‘chva + 2”%
while for the case of nonlinear approximation (42), in:




= 2l %27 +2m /25
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In expression (44), it has been verified that for 0.1£ y£0.5 a good
approximation can be obtained by simply setting:

a fg /2y +2m /|2y » | T¢ (45)
as it can be seen in Figure 4.27, where as an example, the error committed in the
approximation for the case f ¢ =1.1 isreported. The index results then in the simple

expression:
I = e::%r ::V f_ccgar
sec2 T _ava = qum
eCU fcgva
The effects of the approximation introduced with (45) on the upgrading index will be
examined in the next section.

(44)

(46)
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Figure 4.27. Error in the approximation of (45).

The scope of the next section is to verify the accuracy of the upgrading
indices (43) and (44). To this aim, a parametric study has been carried out where the
values of the upgrading index obtained through both (43) and (44) are compared to
the values obtained through numerical analyses performed with a fiber-section
model, presented next, which stepwise accounts for the confinement effect of FRP
wrapping in the concrete core (Monti and Spoelstra 1997a, 1997b).

4.3.4 Comparison between analytical and numerical indices

The effects of the confining action of both GFRP and CFRP wrapping on the
performance of bridge pier sections have been studied on a set of selected full
circular sections, deemed to be representative of a class of bridge piers built in
Europe in the 60’'s and 70's. Using the fiber model presented above, the pier sections



are first assessed (their available ductility d3*® is computed) under “as-built”
conditions, then they are upgraded with different FRP jackets, and then assessed
again (the obtained d? ductility is computed). For each pier examined, the
corresponding (numerically evaluated) upgrading index is compared with the
(analytically computed) upgrading indices of (43) and (44).

In the analyses, the conventiona yield point is found a posteriori, as the
intersection point between the line starting from the origin and passing through the
first yield of a bar in tension, and the line with zero slope passing at 85% of the
maximum moment (which coincides with the ultimate one, if no softening takes

place). The conventional collapse point corresponds to the failure of the uppermost
confined concrete fiber, whose ultimate strain is determined with (27) under as built

conditions and with (30) under upgraded conditions.

Table 4.12. Parameters considered in the parametric study.

Parameter Range
“As built” section

Diameter of section D (m) 1.60

Reduced axial load n 0.04, 0.08, 0.12

Concrete strength £ (MPa) 30, 35, 40

Steel strength o, (MPa) 300, 400, 500

Longitudinal reinforcement ratio I' 4 (%) 0.50, 0.75, 1.00

Transverse reinforcement ratio I' o (%) 0.05, 0.10, 0.15

Composite materials for upgrading

GFRP - Jacket volumetric ratio I i (%) 0.25, 0.50, 0.75
GFRP - Tensile strength fju (MPa) 800, 1000, 1400
GFRP - Young’s modulus Ej (GPa) 35, 45, 65

CFRP - Jacket volumetric ratio I i (%) 0.25, 0.50, 0.75

CFRP - Tensile strength fju (MPa) 1200, 1500, 1700

CFRP - Young’s modulus Ej (GPa) 120, 140, 150

Table 4.12 lists the parameters considered in the study, aong with the
considered range of variation. The adopted values and also the construction material
strengths are deemed to represent those used in old construction standards in the 60's
and 70’s. The piers diameter is kept constant throughout the analyses, thus neglecting
possible scale effects, which however are not deemed to be particularly significant
for the ‘typica’ range of diameters (1.0 to 3.0 m) of bridge piers. This amounts to



assuming that the confining effect only depends on the jacket volumetric ratio r ;.

Here, unidirectional fibers orthogonal to the pier axis have been considered.

The results obtained in the parametric studies are presented in Figure 4.28,
where the indices numerically obtained from the fiber-section model are first
compared to the indices analytically obtained with equation (43), for both upgrading
cases with GFRP and CFRP jackets. Considering that the solid line represents the
perfect coincidence between the analytical and the numerical index, it is seen that
most of the dots representing the numerical outcomes lay very close to it, thus
corroborating the correctness of the formulation developed for the analytical index.

However, it is noticed that for high upgrading values, say, in excess of 4, the
analytical index |, tends to become under-conservative and to overestimate the

effectiveness of the upgrading. This can be imputed to the approximation introduced
with the error function (41): as shown in Figure 4.26, the error is maximum when
0.1£ y£ 0.2, that is, where the neutral axis is more likely located at high ductility
levels, which occur for high upgrading values. On the other hand, for values of the
index |, comprised between 2 and 4, the neutral axisis located in the range where
the approximation errors are lower, and the index, even though obtained with a crude
linearization, predicts the upgrading with sufficient accuracy.

The results obtained with the index |, in (46) are presented in Figure 4.29,

where it can be seen that its performance is extremely improved with respect to the
previous index, notwithstanding the approximation introduced with (45). Thus, it can
be concluded that the upgrading index (46) can be reliably used to optimally design
FRP jackets, for both light and heavy upgrading interventions on r.c. circular
sections. It is interesting to note that higher upgrade levels are attained with GFRP
jackets, rather than with CFRP jackets, thanks to the higher flexibility of GFRP that
allows concrete to reach higher ultimate strains (see also Spoelstra and Monti 1999).
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Figure 4.28. Results of the parametric study. Comparison between the indices obtained numerically
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Figure 4.29. Results of the parametric study. Comparison between the indices obtained numerically
from the fiber-section model and theindex | ., of equation (46).

435 Useof theupgrading index for design of FRP jackets

With equation (46), the upgrading index is now cast as initially intended with
equation (23), that is, it incorporates target (TAR) quantities that can be expressed as
the product of available (AVA) quantities, times the desired upgrading index (1), as

follows:
ATE = ETE") 0 TAR=1AVA @

The unknown quantity TAR is a function, through €2 and f$*, of the

normalized confining pressure f, =3r ; f;,, of the jacket ultimate strain e, and of

the concrete normalized initial modulus E, . Actually, the dependence on this latter
has been observed to be very weak, so that:

TAR(r |, f e )= 1 XAVA (48)
where the terms in parenthesis represent the sought qua_ntiti% of the design
procedure, in the sense that, once the jacket materid (i.e,, f;, and e;,) has been

selected, one can determine the quantity r ;. Unfortunately, the complexity of the
function TAR prevents to explicitly express these quantities in terms of the known
quantity |:AVA . Therefore, a more treatable expression for TAR(r i fju ,eju) has

been sought through a multivariate regression analysis, whose results are condensed
in Figure 4.30, where the solid lines represent the function:

3

TAR(r . fj €)= (2.5 f ejuEF (49)
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Figure 4.30. Function TAR: exact (dashed lines) vs. regression (solid lines).

Thus, equation (48) can be now expressed as:

(2.5 fle, ) ﬁzsr ‘) = | e, [fgve (50)
from which the expron that defines the Jacket volumetric ratio as function of

known quantities (I, f£"* and e2?) and selected quantities ( fJu and e, ), isfinaly
found:

%ava ava
r;=08l xC—X—3 (51)
ju e

ju

where f€"® is obtained through () with f, from (10) and €2 is obtained from
(27).

It should be noticed that the design equation (1) is best suited for cases
having TAR larger than 0.01, because of the steep gradient of the function below that
point (as seen from the concentration of linesin Figure 4.30). Note also that, for FRP
jackets having large ultimate strain e, (say, larger than 0.02), the design equation

tends to underestimate the jacket effectiveness for values of the function TAR larger
than 0.05. It should however be remarked that both ranges of values are rather
unlikely to occur.

The design procedure for designing an FRP jacket can be summarized as
follows:
1. Assess(through survey) the quantities: f¢{,n, m, and mg,

2. Compute fE'? from (9) with f, from (10), and €2 from (27),



3. Assess the available curvature ductility d2'® at the pier base section, through a
section moddl, using f&, n, m and mg,

4, Evaluate the target one d¥", based on expected loads (for the case of seismic
action, see next section),

5. Compute the upgrading index | =1, =d? / da¥®, verify that |1 : AVA >0.01,

6. Select the material for the FRP jacketing ( f;, and e,,),

7. Determine the FRP jacket thickness t; from (51) and t; = r jdj/4.

4.3.6 Design Example

The design procedure outlined in the previous paragraph is here applied to the
r.c. circular bridge pier by Seible et al. (1995c), presented previously, and then the
value found for the jacket thickness is compared to the actual value actually adopted
in the test. The test by Saadatmanesh et al. (1997) was discarded because the
computed value of | :AVA = 0.011 was considered too close to the lower limit of
0.01 under which the design equation is considered to fail.

Pier by Seible et al. (1995¢):
1. f&= 443 MPa, n = 0.046, m =0.025%293/44.3=0.165 and

m, = 0.003x403/44.3 = 0.027 (used in the test),

2. f@2=1.074 from @) with f, =0.550.8>0.003x403= 0.48MPa, and €2 =
0.008 from (27).

3. d2"® = 8.1 at the pier base section (computed with (54) from the experimental

displacement ductility d3** in Table 4.10, with | ,= 0.3 m from (20)),
d?" = 38.8 (computed from d" as above),

4,
5. 1 =l =d®/d2® =458, 1 AVA =0.04> 001,
6
7

fy, =793/44.3=17.9and e, = 0.023 (used in the test),

r; =0.022 and t; = 0.25>608>0.022 = 3.3 mm.

Note the acceptable difference with respect to the values actualy used in the
test: r; =0.0247 and t; =3.81 mm.

4.3.7 Ductility upgrading of piersin seismic regions

When designing upgrading interventions on structures in seismic areas, one
deals with spectral ordinates that measure the seismic action felt by the structure
(usudly, in terms of forces). In a ductility-based design, it is known that the spectra
ordinates used for evaluating the forces acting on a structure are related to the
amount of available ductility. In this view, it is all too natural to define a pier



upgrading index |, analogous to that already defined in terms of ductility, and to

relate it to the spectral ordinates corresponding to different ductility values.
In order to do this, let us consider an elastic-plastic oscillator. The non
collapse requirement is expressed as.

dtar — 9 £ dgva (52)

The above formula states that a SDOF system having mass m, elastic period
T, yield force F,, under a response acceleration R(T)a, (with R(T) = response

spectrum and a, = peak ground acceleration) is required a target displacement

ductility d2", and it survivesif thisis not greater than the available ductility d"@.
The above inequality can be aso expressed in terms of the pier upgrading
index | as.
& mR(T)a
— dd — ( ) g (53)
d gva Fyava d gva
For well-designed or sound structures, the above equation yields a results
lower than 1, then no upgrading is necessary. For insufficiently-designed or damaged
structures, the above equation yields an upgrading index | ., greater than 1. This
might occur, in practical cases, if: @) the mass m on top of the pier increases (e.g.,
enlargement of the deck to accommodate more lanes, or replacement of traffic
barriers with heavier ones); b) the response spectrum (amplification factor) R(T)
ordinate increases (e.g., change of the design spectrum in the seismic code); c) the
peak ground acceleration a, increases €.g., change in the conventional seismic

pier —

classification); d) the pier strength F;*® decreases because of damage; €) the

available ductility d3'® decreases because of damage. This two latter values can be
found through usua assessment procedures.
From the element displacement ductility demand d$", the section curvature

ductility demand d?" should be recovered. For ex., for the simplest case of single-
bent pier, from (19) one gets:

dy-1 (54)
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Thus, the value of the section upgrading index | .. which satisfies the target
condition can be found:

I-I-O:



dtar ) dtcar
| pier = d: %Yo s (55)
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Given the index value as a measure of upgrading requirement of the section,
is then possible to design the upgrading jacket, through the procedure outlined in the
previous section.

4.4 Conclusons

The use of fiber reinforced polymers (FRP) materials is gaining widespread
acceptance in the engineering community, even though in Europe few applications
have been developed, also due to the absence of pertinent regulations in the building
codes. This is mainly related to the fact that necessary studies are currently under
way and aim at clarifying the properties of these innovative materials used in
conjunction with reinforced concrete structures.

One of the aspects that deserves a deeper insight is the ductility enhancement
that is obtainable on bridge piers by wrapping them with FRP sheetings. This is
exactly the goa that has been pursued in the studies presented above: the
development of new, simple and rational design rules for designing the optimal
thickness of FRP jackets in plastic hinge regions of existing reinforced concrete
bridge piers, having circular cross-section. The procedure is deemed for the design of
interventions in sismic regions, but it is initially cast in a general framework and
subsequently specified for the seismic case. To this purpose, an upgrading index has
been defined, which relates the available ductility at the pier base section to the
desired level of ductility to attain through FRP jacketing. The available ductility is
identified through the usual assessment procedures, while the target ductility is
evaluated based on the expected actions on the bridge. It is clear that a ductility
upgrade is atask essentially pursued in cases of seismic strengthening or retrofitting,
nonetheless the procedure is developed for general purposes and the application to
the seismic case is presented as an extension. Once the index has been defined, an
expression suitable for design was sought, which could express ductility as function
of easily computable quantities.

The ability of the proposed index to represent the actual ductility increase due
to upgrading with FRP jackets was tested through a parametric study on bridge piers
sections, deemed to represent the result of an obsolete design procedure, which are
then upgraded with either glass or carbon fiber jackets.

In order to run the numerical analyses to assess the accuracy of the design
eguation, a uniaxial concrete model has been developed (see paragraph 4.1), which
explicitly accounts for the continuous interaction with the confining device. The
model can be used for concrete confined with either steel or FRP and it is meant to
be included in fiber-type finite element models for the analysis of FRP-strengthened
reinforced concrete structures.

This model relies on an iterative procedure, through which the stress-strain
curve is obtained as one that crosses a family of stress-strain curves at corstant
confinement pressure, where at each point the confinement pressure is equal to that



induced by the FRP jacket subjected to the corresponding lateral expansion. In order
to evaluate the lateral strain at a given level of axial strain, a damage model proposed
by Pantazopoulou and Mills (1995) has been adapted to the case of varying
confinement pressure. This model is strongly dependent on the value attributed to the
coefficient b, of which a new equation for its determination has been proposed.

For FRP-confined concrete, the resulting stress-strain curve show a gradually
increasing behavior, until the jacket fails. The smulated compressive response of
normal strength concrete confined with FRP has been compared to available tests on
wrapped cylinders, showing excellent agreement both in terms of stress-strain
behavior and ultimate state. Also, the lateral strain, volume strain, and dilation rate
curves are satisfactorily modeled.

Through the developed model, predictive equations have been derived to
determine the ultimate compressive strength and strain of FRP-confined concrete,
that are useful in the analysis of the response of r.c. sections strengthened with FRP
wrappings. In fact, the proposed confinement model proved to be very effective in
moment-curvature analyses through fiber-section to predict the increase in strength
and ductility of concrete confined with fiber-reinforced plastics, in a more redlistic
manner than the commonly used confinement models (see paragraph 4.2).

Going back to the design equation developed in paragraph 4.3, such fiber
section model was used in the analyses. The numerical indices obtained with the
parametrized fiber section models were then compared withtwo different analytical
indices, each one corresponding to a different approximation introduced in its
formulation. One index has been derived by linearizing the law of variation of the
compressed areas of concrete and steel and the steel tensile area, while the other uses
nonlinear approximations. It has been shown that both analytical indices yields
excellent predictions of the ductility increase obtained through FRP wrapping, but
the second index should be preferred, both, for its better accuracy even at higher
index values, and because of its smplicity, since it requires the knowledge of only
the ultimate strain and the peak strength of concrete. A last step was to split the index
into known (available, from assessment) and unknown (target, to be designed)
quantities and define these latter in terms of the mechanical and geometrical
characteristics of the jacket to be designed.

Eventually, a design equation is obtained that alows to determine the
thickness of the FRP jacket in terms of: the upgrading index, which is the objective
of the design, the selected mechanical characteristics of the jacket, and the quantities
defining the initiadl state of the section. An example application of the design
procedure to a scaled bridge pier, wrapped with FRP and tested to failure, has
demonstrated the accuracy of this equation for designing FRP jackets for the upgrade
of circular r.c. sections.
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